File: bernstein.lisp

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (163 lines) | stat: -rw-r--r-- 5,919 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
;;  Author Barton Willis
;;  University of Nebraska at Kearney
;;  Copyright (C) 2011,2021 Barton Willis

;;  This program is free software; you can redistribute it and/or modify 
;;  it under the terms of the GNU General Public License as published by	 
;;  the Free Software Foundation; either version 2 of the License, or		 
;;  (at your option) any later version.					 
 		       								 
;;  This program is distributed in the hope that it will be useful,		 
;;  but WITHOUT ANY WARRANTY; without even the implied warranty of		 
;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the		 
;;  GNU General Public License for more details.

(in-package :maxima)

($load "bernstein_utilities.mac")

;; When bernstein_explicit is non-nil, bernstein_poly(k,n,x) simplifies to
;; binomial(n,k) * x^k (1-x)^(n-k) regardless of the values of k or n;

(defmvar $bernstein_explicit nil)

;; numerical (complex rational, float, or big float) evaluation of bernstein polynomials
(in-package #:bigfloat)

(defun bernstein-poly (k n x)
  (* (to (maxima::opcons 'maxima::%binomial n k)) (expt x k) (expt (- 1 x) (- n k))))

(in-package :maxima)

(defun $bernstein_poly (k n x) (simplify (list '(%bernstein_poly) k n x)))
(defprop $bernstein_poly %bernstein_poly alias)
(defprop $bernstein_poly %bernstein_poly verb)
(defprop %bernstein_poly $bernstein_poly reversealias)
(defprop %bernstein_poly $bernstein_poly noun)

(setf (get '%bernstein_poly 'conjugate-function) 
      #'(lambda (e)
	  (let ((k (car e))
		(n (cadr e))
		(x (caddr e)))
	    (if (and ($featurep k '$integer) ($featurep n '$integer))
		(opcons '%bernstein_poly k n (opcons '$conjugate x))
	     (list (list '$conjugate 'simp) (take '(%bernstein_poly) k n x))))))

;; integrate(bernstein_poly(k,n,x),x) = hypergeometric([k+1,k-n],[k+2],x)*x^(k+1)/(k+1)

(defun bernstein-integral (k n x)
  (div
   (mul 
    (opcons '%binomial n k)
    (opcons 'mexpt x (add 1 k))
    (opcons '%hypergeometric 
	    (opcons 'mlist (add 1 k) (sub k n))
	    (opcons 'mlist (add 2 k))
	    x))
   (add 1 k)))
	  
(putprop '%bernstein_poly `((k n x) nil nil ,'bernstein-integral) 'integral)
(putprop '$bernstein_poly `((k n x) nil nil ,'bernstein-integral) 'integral)

(defun bernstein-poly-simp (e y z)
  (declare (ignore y))
  (let* ((fn (car (pop e)))
	 (k (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
	 (n (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
	 (x (if (consp e) (simpcheck (pop e) z) (wna-err fn))))
    (if (consp e) (wna-err fn))
    (cond ((and (integerp k) (integerp n) (>= k 0) (>= n k)
		(complex-number-p x #'(lambda (s) (or (integerp s) ($ratnump s) (floatp s) ($bfloatp s)))))
	   (maxima::to (bigfloat::bernstein-poly (bigfloat::to k)  (bigfloat::to n) (bigfloat::to x))))

	  ((zerop1 x) (opcons '%kron_delta k 0))
	  
	  ((onep1 x) (opcons '%kron_delta k n))

	  ((or $bernstein_explicit (and (integerp k) (integerp n)))
	   (if (and (integerp k) (integerp n) (or (< k 0) (> k n))) (mul 0 x)
	     (mul (opcons '%binomial n k) (opcons 'mexpt x k) (opcons 'mexpt (sub 1 x) (sub n k)))))

	  (t (list (list fn 'simp) k n x)))))
	    
(setf (get '%bernstein_poly 'operators) 'bernstein-poly-simp)

(defprop %bernstein_poly
  ((k n x)

   ((mtimes) ((%bernstein_poly) k n x)
    ((mplus)
     ((mtimes) -1
      ((mqapply) (($psi array) 0) ((mplus) 1 k)))
     ((mqapply) (($psi array) 0)
      ((mplus) 1 ((mtimes) -1 k) n))
     ((mtimes) -1
      ((%log) ((mplus) 1 ((mtimes) -1 x))))
     ((%log) x)))

   ((mtimes)((%bernstein_poly) k n x)
    ((mplus)
     ((mqapply) (($psi array) 0) ((mplus) 1 n))
     ((mtimes) -1
      ((mqapply) (($psi array) 0)
       ((mplus) 1 ((mtimes) -1 k) n)))
     ((%log) ((mplus) 1 ((mtimes) -1 x))))) 
   
   ((mtimes)
    ((mplus)
     ((%bernstein_poly) ((mplus) -1 k) ((mplus) -1 n) x)
     ((mtimes) -1
      ((%bernstein_poly) k ((mplus) -1 n) x))) n))
  grad)
 
(defun $bernstein_approx (e vars n)
  (if (not ($listp vars)) (merror "The second argument to bernstein_approx must be a list"))

  (setq vars (margs vars))
  (if (some #'(lambda (s) (not ($mapatom s))) vars) 
      (merror "The second argument to bernstein_approx must be a list of atoms"))

  (if (or (not (integerp n)) (< n 1)) (merror "The third argument to bernstein_approx must be a positive integer"))

  (let* ((k (length vars))
	 (d (make-list k :initial-element 0))
	 (nn (make-list k :initial-element n))
	 (carry) (acc 0) (m) (x))
   
    (setq m (expt (+ n 1) k))
    (setq nn (cons '(mlist) nn))
    (dotimes (i m)
      (setq acc (add acc 
		     (mul
		      (opcons '%multibernstein_poly (cons '(mlist) d) nn (cons '(mlist) vars))
		      ($substitute (cons '(mlist) (mapcar #'(lambda (s x) (opcons 'mequal x (div s n))) d vars)) e))))
      (setq carry 1)
      (dotimes (j k)
	(setq x (+ carry (nth j d)))
	(if (> x n) (setq x 0 carry 1) (setq carry 0))
	(setf (nth j d) x)))
    acc))
  
(defun $multibernstein_poly (k n x) (simplify (list '(%multibernstein_poly) k n x)))
(defprop $multibernstein_poly %multibernstein_poly alias)
(defprop $multibernstein_poly %multibernstein_poly verb)
(defprop %multibernstein_poly $multibernstein_poly reversealias)
(defprop %multibernstein_poly $multibernstein_poly noun)

(defun multi-bernstein-poly-simp (e y z)
  (declare (ignore y))
  (let* 
      ((fn (car (pop e)))
       (k (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
       (n (if (consp e) (simpcheck (pop e) z) (wna-err fn)))
       (x (if (consp e) (simpcheck (pop e) z) (wna-err fn))))
    (if (consp e) (wna-err fn))

    (if (or (not (and ($listp k) ($listp n) ($listp x))) (/= ($length k) ($length n)) (/= ($length n) ($length x)))
	(merror "Each argument to multibernstein_poly must be an equal length list"))

    (muln (mapcar #'(lambda (a b z) (opcons '%bernstein_poly a b z)) (margs k) (margs n) (margs x)) t)))

(setf (get '%multibernstein_poly 'operators) 'multi-bernstein-poly-simp)