File: rtest_bernstein.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (149 lines) | stat: -rw-r--r-- 3,926 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
(kill(all), load("bernstein"),0);
0$

[errcatch(bernstein_poly()), 
 errcatch(bernstein_poly(2)), 
 errcatch(bernstein_poly(5,6)), 
 errcatch(bernstein_poly(false,false,false,false))];
[[],[],[],[]]$

bernstein_poly(0,0,x);
1$

[bernstein_poly(0,1,x), bernstein_poly(1,1,x)];
[1-x,x]$

[bernstein_poly(0,2,x), bernstein_poly(1,2,x),bernstein_poly(2,2,x)];
[(1-x)^2,2*(1-x)*x,x^2]$

bernstein_poly(5,1,x);
0$

bernstein_poly(-1,1,x);
0$

bernstein_poly(k,n,0);
kron_delta(k,0)$

bernstein_poly(k,n,1);
kron_delta(k,n)$

expand(makelist(sum(bernstein_poly(k,n,x),k,0,n),n,0,15));
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]$

makelist(sum(bernstein_poly(k,n,1/5 + %i),k,0,n),n,0,25);
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]$

map(lambda([s], is(abs(1-s) < 1.0e-10)), makelist(sum(bernstein_poly(k,n,0.4 + %i),k,0,n),n,0,12));
[true,true,true,true,true,true,true,true,true,true,true,true,true]$

(fpprec : 54, map(lambda([s], is(abs(1-s) < 1.0e-50)), makelist(sum(bernstein_poly(k,n,1.4b0- %i/5),k,0,n),n,0,12)));
[true,true,true,true,true,true,true,true,true,true,true,true,true]$

/* derivatives */
(reset(fpprec), listarith : true,0);
0$

(q : block([bernstein_explicit : false,k,n,x], makelist(diff(bernstein_poly(k,n,x),v),v,[k,n,x]))
    -block([bernstein_explicit : true,k,n,x], makelist(diff(bernstein_poly(k,n,x),v),v,[k,n,x])),
 expand(subst([k=5,n=8],q)));
[0,0,0]$

/* integrals */ 

(assume(k +1 > 0),0);
0$

block([expand_hypergeometric : true, bernstein_explicit : false,i1,i2],
  i1 :  integrate(bernstein_poly(k,n,x),x,0,z),
  i2 : integrate(bernstein_poly(12,18,x),x,0,z),
  expand(subst([k=12,n=18], i1-i2)));
0$

block([expand_hypergeometric : true, bernstein_explicit : false,i1,i2],
  i1 :  integrate(bernstein_poly(k,n,x),x,0,z),
  i2 : integrate(bernstein_poly(5,5,x),x,0,z),
  expand(subst([k=5,n=5], i1-i2)));
0$

(declare(kk,integer, nn, integer, z, complex),0);
0$

conjugate(bernstein_poly(kk,nn,z));
bernstein_poly(kk,nn,conjugate(z))$


conjugate(bernstein_poly(k,n,z));
conjugate(bernstein_poly(k,n,z))$

(remove(z,complex,kk,integer, nn,integer),0);
0$

bernstein_approx(f(x),[x],1);
f(1)*x+f(0)*(1-x)$

bernstein_approx(f(x),[x],3);
f(1)*x^3+3*f(2/3)*(1-x)*x^2+3*f(1/3)*(1-x)^2*x+f(0)*(1-x)^3$

bernstein_approx(f(x,y),[x,y],1);
f(1,1)*x*y+f(0,1)*(1-x)*y+f(1,0)*x*(1-y)+f(0,0)*(1-x)*(1-y)$

bernstein_approx(f(x,y),[x,y],2);
f(1,1)*x^2*y^2+2*f(1/2,1)*(1-x)*x*y^2+f(0,1)*(1-x)^2*y^2+2*f(1,1/2)*x^2*(1-y)*y+4*f(1/2,1/2)*(1-x)*x*(1-y)*y+2*f(0,1/2)*(1-x)^2*(1-y)*y+f(1,0)*x^2*(1-y)^2+2*f(1/2,0)*(1-x)*x*(1-y)^2+f(0,0)*(1-x)^2*(1-y)^2$

errcatch(multibernstein_poly(2,3,x));
[]$

errcatch(multibernstein_poly([2],[3],x));
[]$

errcatch(multibernstein_poly([1,2,3],[u,n,k],[8]));
[]$

errcatch(multibernstein_poly(2,3,false, false));
[]$

expand(multibernstein_poly([2,4,5],[7,8,9],[x,y,z]) - xreduce("*", map('bernstein_poly, [2,4,5],[7,8,9],[x,y,z])));
0$

multibernstein_poly([9,q,p],[8,q,p],[x,y,z]);
0$

multibernstein_poly([q,p,r,9],[l,s,s,5],[w,x,y,z]);
0$

q : bernstein_expand(x*y+1,[x,y]);
2*x*y+(1-x)*y+x*(1-y)+(1-x)*(1-y)$

ratexpand(q);
x*y+1$

q : bernstein_expand(x*y+a,[x,y]);
(a+1)*x*y+a*(1-x)*y+a*x*(1-y)+a*(1-x)*(1-y)$

ratexpand(q);
x*y+a$

q : bernstein_expand(x*y+a,[x]);
x*(y+a)+a*(1-x)$

ratexpand(q);
x*y+a$

q : bernstein_expand(x^2 + y^2 + x + y - 42,[x,y]);
-38*x^2*y^2-79*(1-x)*x*y^2-40*(1-x)^2*y^2-79*x^2*(1-y)*y-164*(1-x)*x*(1-y)*y-83*(1-x)^2*(1-y)*y-40*x^2*(1-y)^2
-83*(1-x)*x*(1-y)^2-42*(1-x)^2*(1-y)^2$

ratexpand(q);
x^2 + y^2 + x + y - 42$

q : bernstein_expand(sqrt(5) * x^2 + (1 - %pi) * y^2 + 2*%e * x+ y - 42,[x,y]);
(-2*%pi+2*%e+sqrt(5)-39)*x^2*y^2+2*(-2*%pi+%e-39)*(1-x)*x*y^2+(-2*%pi-39)*(1-x)^2*y^2+2*(2*%e+sqrt(5)-83/2)*x^2*(1-y)*y
+4*(%e-83/2)*(1-x)*x*(1-y)*y-83*(1-x)^2*(1-y)*y+(2*%e+sqrt(5)-42)*x^2*(1-y)^2+2*(%e-42)*(1-x)*x*(1-y)^2-42*(1-x)^2*(1-y)^2$

ratexpand(q);
-2*%pi*y^2+2*y^2+y+sqrt(5)*x^2+2*%e*x-42$

(forget(k+1 > 0), remvalue(q),0);
0$