1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
ttyoff:true $
load("qualsp");
matchdeclare([utrue,vtrue,wtrue],true)$
tellsimp(qual(utrue), qual1(utrue, listofvars(utrue))) $
tellsimp(qual(utrue,vtrue),qual1(utrue,qual_listify(vtrue))) $
tellsimp(revelation(utrue), revelation1(utrue,200,300)) $
tellsimp(revelation(utrue,vtrue), revelation1(utrue,vtrue,300))$
tellsimp(revelation(utrue,vtrue,wtrue),
revelation1(utrue,vtrue,wtrue)) $
tellsimp(slopes(utrue),slopes1(utrue,listofvars(utrue)))$
tellsimp(slopes(utrue,vtrue),slopes1(utrue,qual_listify(vtrue)))$
tellsimp(symmetry(utrue),symmetry1(utrue,listofvars(utrue)))$
tellsimp(symmetry(utrue,vtrue),symmetry1(utrue,qual_listify(vtrue)))$
tellsimp(periods(utrue), periods1(utrue,listofvars(utrue))) $
tellsimp(periods(utrue,vtrue),periods1(utrue,qual_listify(vtrue))) $
tellsimp(limits(utrue),limits1(utrue,listofvars(utrue)))$
tellsimp(limits(utrue,vtrue),limits1(utrue,qual_listify(vtrue)))$
tellsimp(stationarypoints(utrue),stationarypoints1(utrue,
listofvars(utrue)))$
tellsimp(stationarypoints(utrue,vtrue),stationarypoints1(utrue,
qual_listify(vtrue))) $
variablep(u) := is(atom(u) and not numberp(u) or subvarp(u)) $
qual_listify(u) :=
if listp(u) then u else [u] $
qual1(u,v) := block(
revelation1(u, 200, 300),
return([first(ldisp('bounds=bounds(u))), slopes1(u,v),
ldisp('curvature=curvature(u)), symmetry1(u:radcan(u),v),
periods1(u,v), zerosandsingularities(u), limits1(u,v),
stationarypoints1(u,v)])) $
revelation1(u,umin,revmax) := block(
[rev, lold, lnew, lu],
if (lu:?length(?makstring(u)))>umin then (lold:-1,
for j:1 step 1 while (lnew:?length(?makstring(rev:reveal(u,j))))
<=revmax and lnew#lold and lnew<lu do(
disp('reveal("...", ''j) = rev),
lold:lnew))) $
slopes1(u,v) := block(
[ans, partswitch, prederror],
partswitch:true, prederror:false, ans: [],
for x in v do ans: cons(slopes2(u,x), ans),
return(ans)) $
slopes2(u,x) := block(
u: bounds1(diff(u,x)),
return(first(ldisp(slope(x) =
if posl(u[1]) then 'increasing
else if negu(u[2]) then 'decreasing
else if nonnegl(u[1]) then
if nonposu(u[2]) then 'constant
else 'nondecreasing
else if nonposu(u[2]) then 'nonincreasing
else 'unknown)))) $
curvature(u) := block(
[v], v:listofvars(u),
return(['strictconcave, 'concave, 'nonconvex, 'concaveandconvex,
'nonconcave, 'convex, 'strictconvex,
'neitherconcavenorconvex, 'unknown]
[definitecode(qual_hessian(gradient(u,v),v))])) $
qual_hessian(g,v) := block(
[ans],
ans:[],
for x in v do ans: endcons(diff(g,x), ans),
funmake('matrix, ans))$
gradient(u,v) := block(
[ans],
ans: [],
for x in v do ans: endcons(diff(u,x), ans),
return(ans)) $
symmetry1(u,v) := block(
[ans],
ans: [],
if u=0 then return(['zero]),
for x in v do ans: endcons(first(ldisp(symmetries(x)=symmetry2(u,
x))), ans),
return(ans)) $
symmetry2(u,x):= block(
[umx, evn, od, temp, v],
umx: subst(x=-x, u),
temp: radcan(u-umx),
if temp=0 then return('even),
umx: radcan(u+umx),
if umx=0 then return('odd),
if numberp(temp) then evn:'no
else if length(v:listofvars(umx))=1 then evn:zeroequiv(temp,v)
else evn: 'unknown,
if numberp(umx) then od: 'no
else if length(v:listofvars(umx))=1 then od:zeroequiv(temp,v)
else od: 'unknown,
if evn=true then
if od=true then
if zeroequiv(u,v)=true then return('probablyzero)
else return('unknown)
else return('probablyeven),
if od=true then return('probablyodd),
if evn='no then
if od='no then return('neither)
else if od=false then return('nonevenandprobablynonodd)
else return('noneven),
if od='no then
if evn=false then return('nonoddandprobablynoneven)
else return('nonodd),
if evn=false then
if od=false then return('probablyneither)
else return('probablynoneven),
if od=false then return('probablynonodd),
return('unknown)) $
periods1(u,v) := block(
[ans, partswitch],
partswitch: true,
u: trigreduce(u),
ans: [],
for x in v do ans: endcons(first(ldisp(period(x)=period2(u,
x))),ans),
return(ans)) $
period2(u,x) := block(
[ans],
if numberp(u) then return(0),
if variablep(u) then
if u=x then return('inf)
else return(0),
if inpart(u,0)="*" or piece="+" then (
ans: period2(inpart(u,1), x),
for j:2 step 1 while ans # 'inf and inpart(u,j) # 'end do
ans: lcmspec(ans,period2(piece,x)),
return(ans)),
if piece="^" then return(lcmspec(
period2(inpart(u,1),x),period2(inpart(u,2),x))),
if piece='sin or piece='cos or piece='sec or piece='csc then
if freeof(x,inpart(u,1)) then return(0)
else if freeof(x,ans:diff(piece,x)) then return(2*%pi/ans)
else return('inf),
if piece='tan or piece='cot then
if freeof(x,inpart(u,1)) then return(0)
else if freeof(x,ans:diff(piece,x)) then return(%pi/ans)
else return('inf),
return(period2(inpart(u,1),x))) $
lcmspec(u,v) :=
if u=0 then v
else if v=0 then u
else if u='inf or v='inf then 'inf
else num(u)*num(v)/gcd(num(u)*denom(v), num(v)*denom(u)) $
limits1(u,v) := block(
[ans, t, partswitch],
ans: [],
partswitch: true,
for x in v do (t: lbatom(x),
ans : endcons(first(ldisp(limitas(x,t) =
if inpart(t,0)='strict then strict(limit(u,x,inpart(t,1),
'plus))
else limit(u,x,t,'plus))), ans),
t: ubatom(x),
ans: endcons(first(ldisp(limitas(x,t) =
if inpart(t,0)='strict then strict(limit(u,x,inpart(t,1),
'minus))
else limit(u,x,t,'minus))), ans)),
return(ans)) $
zerosandsingularities(u) := block(
[partswitch, temp, prederror],
prederror: false,
partswitch:true,
u: radcan(trigreduce(u)),
temp: zp1(factor(ratdenom(u)), zp1(factor(ratnumer(u)),[[],[]])),
return(ldisp('zeros = first(temp), 'singularities=temp[2])))$
zp1(n,zp) := block(
[z,p],
z:first(zp), p:zp[2],
if not constantp(n) then
if inpart(n,0)="*" then for j:1 step 1 while inpart(n,j)#'end
do (if not constantp(piece) then (z:cons(piece=0,z),
p:conssingularities(p,piece)))
else(z:cons(n=0,z),
p:conssingularities(p,n)),
return([p,z])) $
conssingularities(p,u) := block(
[bas],
if variablep(u) then return(p),
if inpart(u,0)="+" or piece="*" then
for j:1 step 1 while inpart(u,j)#'end do p:conssingularities(p,piece)
else if piece="^" and not constantp(bas:inpart(u,1)) then
if numberp(piece) then (
if piece<0 then p:cons(bas=0, p))
else piece: cons(bas=0 and piece<0, p)
else if piece='log and not numberp(inpart(u,1)) then
p:cons(piece=0,p)
else if (piece='tan or piece='sec) and not numberp(inpart(u,1))
then p: cons(piece-('integer+1/2)*%pi=0, p)
else if (piece='cot or piece='csc) and not numberp(inpart(u,1))
then p: cons(piece-'integer*%pi=0, p)
else if piece='atanh and not numberp(inpart(u,1))
then p: cons(piece-1=0, cons(piece+1=0, p)),
return(p)) $
stationarypoints1(u,v) := block(
[singsolve,grindswitch,dispflag,g,ans,uu,s],
g:gradient(u,v),
singsolve: grindswitch: true,
dispflag: false,
s:errcatch(ev(solve(g,v),eval)),
if s=[] or s=[[]] or s=[[false=0]]
then return(ldisp("no stationary points found")),
s:first(s),
ans: ldisp("stationary points" = s),
uu:[],
for ss in s do uu: endcons(if length(v)>1 or first(v)=lhs(ss) and
freeof(first(v),rhs(ss)) then subst(ss,u) else 'unknown ,uu),
ans:endcons(first(ldisp("corresponding expression values" = uu)),
ans),
g: qual_hessian(g,v), uu: [],
for ss in s do uu: endcons(type(definitecode(subst(ss,g))),uu),
ans: endcons(first(ldisp("corresponding types" = uu)), ans),
return(ans)) $
type(u) :=
['maximum, 'nonminimum, 'nonminimum, 'unknown, 'nonmaximum,
'nonmaximum, 'minimum, 'saddle, 'unknown][u] $
bounds(w) := ev(bounds1(w),prederror:false,partswitch:true)$
bounds1(w) := block(/* W is an expression. Returns list of its
lower, then upper bounds. (reference: file qual usage . In
comments below, "symbolic" means neither numerical, inf, minf,
or strict with such an argument. */
[u, v, t],
if numberp(w) then return([w,w]),
if variablep(w) then return([lbatom(w), ubatom(w)]),
if inpart(w,0) = "+" then (u: bounds1(inpart(w,1)),
for j:2 step 1 while u#['minf,'inf] and inpart(w,j) # 'end do
(v: bounds1(piece),
u: [addbnd(u[1],v[1]), addbnd(u[2],v[2])]),
return(u)),
if piece = "*" then (u:bounds1(inpart(w,1)),
for j:2 step 1 while inpart(w,j) # 'end do (
v:bounds1(piece),
/* Try standardizing lowerbound of 1st arg to nonnegative: */
if nonnegl(u[1]) then u:bndnntimes(u,v)
else if nonnegl(v[1]) then u:bndnntimes(v,u)
else if nonposu(u[2]) then u:bndnntimes(bndminus(u),bndminus(v))
else if nonposu(v[2]) then u:bndnntimes(bndminus(v),bndminus(u))
/* Try standardizing lowerbound of 1st arg to negative: */
else if negl(u[1]) then u:bndnegtimes(u,v)
else if negl(v[1]) then u:bndnegtimes(v,u)
else if posu(u[2]) then u:bndnegtimes(bndminus(u),bndminus(v))
else if posu(v[2]) then u:bndnegtimes(bndminus(v),bndminus(u))
/* Both bounds of both args are symbolic: */
else (u:[u[1]*v[1], u[1]*v[2], u[2]*v[1], u[2]*v[2]],
u: [apply('min,u), apply('max,u)])),
return(u)),
if piece="^" then (u:bounds1(inpart(w,1)), v:bounds1(inpart(w,2)),
if posl(u[1]) then
/*Try standardizing lowerbound of 1st arg to >=1: */
if ge1l(u[1]) then return(bndge1to(u,v))
else if le1u(u[2]) then return(bndrecip(bndge1to(bndrecip(u),
v)))
else if ge1u(u[2]) then
/* 0<=u[1]<1 and u[2]>1. Try standardizing
lower bound of 2nd arg to nonnegative: */
if nonnegl(v[1]) then return(bndspan1tonn(u,v))
else if nonposu(v[2]) then return(bndrecip(bndspan1tonn(u,
bndminus(v))))
/* v[1]<1 or symbolic & v[2]>1 or symbolic. Standardize
nonsymbolic args of ** to nonneg: */
else return([min(nntonn(u[1],v[2]),recipl(nntonn(u[2],neg8(
v[1])))), max(nntonn(u[2],v[2]),recipu(nntonn(u[1],neg8(
v[1]))))])
/* 0<=u[1]<1 & u[2] symbolic. Try standardizing lower
bound of 2nd arg to nonegative: */
else if nonnegl(v[1]) then return(bndmayspan1tonn(u,v))
else if nonposu(v[2]) then
return(bndrecip(bndmayspan1tonn(u,bndminus(v))))
/* u[1]<1 & u[2] symbolic: */
else if posu(v[2]) then
if negl(v[1]) then return([min(nntonn(u[1],v[2]),u[2]**v[1]),
max(recipu(nntonn(u[1],neg8(v[1]))), u[2]**v[2])])
/* v[1] symbolic too, so another possible upperbound:*/
else return([min(nntonn(u[1],v[2]), u[2]**v[1]),
max(u[1]**v[1], u[2]**v[2], u[2]**v[1])])
else if negl(v[1]) then return([min(u[1]**v[2],u[2]**v[2],u[2]
**v[1]),max(recipu(nntonn(u[1],neg8(v[1]))),u[2]**v[2])])
/* v[1] & v[2] symbolic. 3 symbolic possibilities for
each bound: */
else return([min(u[1]**v[2], u[2]**v[2], u[2]**v[1]),
max(u[1]**v[1], u[2]**v[2], u[2]**v[1])])
/* u[1]=0 or symbolic. Negatives must not be raised to
nonintegers: */
else if integerp(v[1]) and integerp(v[2]) then
if v[1]=v[2] then /* interval ** integer: */
if v[1]>=0 then
if evnp(v[1]) then
if nonposu(u[2]) then return([nntonn(neg8(u[2]),v[1]),
nntonn(neg8(u[1]),v[1])])
/* interval spanning 0 ** nonnegative integer: */
else if negl(u[1]) and posu(u[2]) then return([0,
max(nntonn(u[2],v[1]), nntonn(neg8(u[1]),v[1]))])
/* u[1] or u[2] symbolic so that maybespan0 **
nonnegative even integer: */
else return([if posu(u[2]) then 0 else u[2]**v[2],
max(nntonn(neg8(u[1]),v[2]), u[2]**v[2])])
else return([neg8(nntonn(neg8(u[1]),v[1])),
/* Allow for symbolic or either-signed
upper bound of u: */
if negu(u[2]) then neg8(nntonn(neg8(u[2]),v[1]))
else nntonn(u[2],v[1])])
/* u[1]<0: */
else if nonposu(u[2]) then
if evnp(v[1]) then return(bndrecip(bndge1tonn(bndminus(u),
bndminus(v))))
else return(bndminus(bndrecip(bndge1tonn(bndminus(u),
bndminus(v)))))
else return(['minf,'inf])
else if negu(u[2]) then
/* Try standardizing lowerbound of 1st arg <=-1: */
if lem1u(u[2]) then return(bndlem1to(u,v))
else if gem1l(u[1]) then return(bndlem1to(bndrecip(u)
,bndminus(v)))
else if lem1l(u[1]) then
/* u[1]<-1 & u[2]>-1. Try standardizing lower
bound of v to nonnegative: */
if nonnegl(v[1]) then return(bndspanm1tonn(u,v))
else if nonposu(v[2]) then return(bndrecip(bndspanm1tonn(
u, bndminus(v))))
else (w: bndlem1tonn(u,v),
/* v[1]<0 or symbolic & v[2]>0 or symbolic: */
u: bndlem1tonn(bndrecip(u),bndminus(v)),
return([min(u[1],w[1]), max(u[2],w[2])]))
/* u[1] algebraic: */
else return([lb(w),ub(w)])
else if v[1]>=0 then ( /* 0<=v[1]<v[2]: */
if lem1l(u[1]) then t: bndlem1tonn(u,v)
else if gem1l(u[1]) then
/* u[1] symbolic: */
t: bndrecip(bndlem1tonn(bndrecip([1,u[1]]),v))
else return([lb(w), ub(w)]),
if ge1u(u[2]) then u: nntonn(u[2],v[2])
else if le1u(u[2]) then u: nntonn(u[2],v[1])
/* u[2] symbolic: */
else return([lb(w), ub(w)]),
return([t[1], max(t[2],u)]))
else if v[2]<0 and negu(u[2]) and posl(u[1])
then return(['minf,'inf])
else return(['minf, 'inf])),
if piece='log or piece='atan or piece='erf or piece='sinh or
piece='asinh or piece='acosh or
piece='tanh then return(bndunary(piece, bounds(inpart(w,1)))),
if piece = 'sin or piece = 'cos then return([-1,1]),
if piece='acot or piece='asech then return(
reverse(bndunary(piece, bounds(inpart(w,1))))),
if piece = 'cosh then return([1, 'inf]),
if piece='sech then return([0,1]),
if piece='asec then return([0, 3.14159]),
if piece='acsc then return([-1.57079, 1.57079]),
if piece='asin or piece='atanh then return(bndrestrict(piece,w)),
if piece='acos then return(reverse(bndrestrict(piece,w))),
return(['minf, 'inf])) $
bndrestrict(p,w) := block(
w:bounds(inpart(w,1)),
if lem1l(w[1]) then w[1]:-1,
if ge1u(w[2]) then w[2]:1,
return(bndunary(p,w))) $
addbnd(b1,b2) := /* b1 and b2 are both lower or both upper
bounds. Returns their sum. Assumes partswitch:true. */
if b1='inf or b2='inf then 'inf
else if b1='minf or b2='minf then 'minf
else if inpart(b1,0)='strict then
if inpart(b2,0)='strict then
strict(addbnd(inpart(b1,1), inpart(b2,1)))
else strict(addbnd(inpart(b1,1), b2))
else if inpart(b2,0)='strict then strict(addbnd(b1,inpart(b2,1)))
else b1+b2 $
bndge1to(u,v) := /* u & v are intervals, with u[1]>=1. Returns
interval of u**v. First try standardizing to nonnegative
lower bound of power: */
if nonnegl(v[1]) then bndge1tonn(u,v)
else if nonposu(v[2]) then bndrecip(bndge1tonn(u,bndminus(v)))
else if negl(v[1]) then
if posu(v[2]) then [recipl(nntonn(u[2], neg8(v[1]))),
nntonn(u[2],v[2])]
/* v[2] symbolic: */
else [recipl(nntonn(u[2], neg8(v[1]))), max(u[1]**v[2],
u[2]**v[2])]
/* v[1] symbolic: */
else if posu(v[2]) then [min(u[1]**v[1], u[2]**v[1]),
nntonn(u[2],v[2])]
/* v[1] and v[2] symbolic: */
else [min(u[1]**v[1], u[2]**v[1]), max(u[1]**v[2], u[2]**v[2])] $
bndge1tonn(u,v) := /* u & v are intervals with u[2]>=1, v[1]>=0.
Returns interval of u**v. */
[nntonn(u[1],v[1]), nntonn(u[2],v[2])] $
bndlem1to(u,v) := /* u and v are intervals with u[2]<=-1 &
v[1] & v[2] are unequal integers. Returns interval of u**v.
First, standardize to v[2]>0: */
if v[2]>0 then bndlem1tonn(u,v)
else if evnp(v[2]) then [recipl(neg8(nntonn(neg8(u[2]),1-v[2]))),
recipu(nntonn(neg8(u[2]),-v[2]))]
else [recipl(neg8(nntonn(neg8(u[2]),-v[2]))),
recipu(nntonn(neg8(u[2]),1-v[2]))] $
bndlem1tonn(u,v) := /* u & v are intervals with u[1]>=1, v[2]>1.
Returns interval for u**v. */
if evnp(v[2]) then [neg8(nntonn(neg8(u[1]),v[2]-1)),
nntonn(neg8(u[1]),v[2])]
else [neg8(nntonn(neg8(u[1]),v[2])),nntonn(neg8(u[1]),v[2]-1)]$
bndmayspan1tonn(u,v) := /* u & v are intervals with 0<=u[1]<1 &
u[2] symbolic & v[1]>=0. Returns interval for u**v. */
[nntonn(u[1],v[2]), max(u[2]**v[1], u[2]**v[2])] $
bndminus(u) := /* u is an interval. returns interval for -u. */
[neg8(u[2]), neg8(u[1])] $
bndnntimes(u,v) := /* u & v are intervals with u[1]>=0. returns
interval of u*v. First, try to standardize lower bound
of 2nd arg to nonnegative too: */
if nonnegl(v[1]) then bndnntimnn(u,v)
else if nonposu(v[2]) then bndminus(bndnntimnn(u,bndminus(v)))
else if negl(v[1]) then
if posu(v[2]) then [neg8(mgez(u[2],neg8(v[1]))),mgez(u[2],v[2])]
else [neg8(mgez(u[2],neg8(v[1]))), max(u[1]*v[2], u[2]*v[2])]
else if posu(v[2]) then [min(u[1]*v[1], u[2]*v[1]), mgez(u[2],v[2])]
else [min(u[1]*v[1], u[2]*v[1]), max(u[1]*v[2], u[2]*v[2])] $
bndnegtimes(u,v) := /* u & v are intervals with u[1]<0.
Returns interval of u*v. */
if posu(u[2]) or posu(v[2]) and negl(v[1]) then
[min(neg8(mgez(neg8(u[1]),v[2])), neg8(mgez(u[2],neg8(v[1])))),
max(mgez(neg8(u[1]),neg8(v[1])), mgez(u[2],v[2]))]
else if negl(v[1]) then [min(u[2]*v[2], u[2]*v[1], u[1]*v[2]),
max(mgez(neg8(u[1]), neg8(v[1])), u[2]*v[2])]
else if posu(v[2]) then [min(u[2]*v[1],neg8(mgez(neg8(u[1]),v[2]))),
max(u[2]*v[2], u[2]*v[1], u[1]*v[1])]
else [min(u[2]*v[2], u[2]*v[1], u[1]*v[2]),
max(u[2]*v[2], u[2]*v[1], u[1]*v[1])] $
bndnntimnn(u,v) := /* u & v are intervals with u[1] & u[2]>=0.
Returns interval for u*v. */
[mgez(u[1],v[1]), mgez(u[2],v[2])] $
bndnptonnevn(u,v) := /* u & v are intervals with u[1]<=0 &
v a nonnegative even integer. Returns interval of u**v. */
[nntonn(neg8(u[2]),v[1]), nntonn(neg8(u[1]), v[1])] $
bndrecip(u) := /* u is an interval not containing zzero in its
interior. Returns interval of 1/u. */
[recipl(u[2]), recipu(u[1])] $
bndspan1tonn(u,v) := /* u & v are intervals with 0<=u[1]<1<u[2]
& v[1]>=0. Returns interval for u**v. */
[nntonn(u[1],v[2]), nntonn(u[2],v[2])] $
bndunary(name,u) := /* Name is the name of a univariate
nondecreasing function such as log, and u is the bounds of its
argument. Returns bounds1(name(argument)). */
[unarybnd(name, u[1], 'plus), unarybnd(name, u[2], 'minus)] $
evnp(b) := /* b is integer. Returns true if it is even & false
otherwise. */
if integerp(b/2) then true else false $
gem1l(lb) := /* lb is a lowerbound. Returns true if it is >=1,
false otherwise. */
if numberp(lb) and lb>=-1 or inpart(lb,0)='strict and
numberp(inpart(lb,1)) and piece>=-1 then true
else false $
ge1l(lb) := /* lb is a lowerbound. Returns true if it is >=1,
false otherwise. */
if numberp(lb) and lb>=1 or inpart(lb,0)='strict and numberp(
inpart(lb,1)) and piece>=1 then true
else false $
ge1u(ub) := /* ub is an upperbound. Returns true if it is >=1,
false otherwise. */
if ub='inf or numberp(ub) and ub>=1 or inpart(ub,0)='strict and
(numberp(bounds1(inpart(ub,1))) and piece>1 or piece='inf)then true
else false $
/*lbatom(w) := block(/* w is an indeterminate. Returns its
lowerbound, printing a message and establishing it as minf if
none existed. */
[ans],
ans: get(w, lowerbound),
if ans=false then (print("doing put(", w, ", minf, lowerbound)"),
put(w, 'minf, lowerbound),
ans:'minf),
return (ans)) $*/
lbatom(w) := block(
[ans],
if w=%e then return(2.718281),
if w=%pi then return(3.141592),
ans: greaters(w),
if ans=[] then (ans:geqs(w),
if ans=[] then ans:'minf
else ans: first(ans))
else ans: strict(first(ans)),
return(ans)) $
lem1l(lb) := /* lb is a lowerbound. Returns true if it's <=-1,
false otherwise. */
if numberp(lb) and lb<=-1 or lb='minf or inpart(lb,0)='strict and
(inpart(lb,1)='minf or numberp(piece) and piece<1) then true
else false $
lem1u(ub) := /* ub is an upperbound. Returns true if it's <=-1,
false otherwise. */
if numberp(ub) and ub<=-1 or inpart(ub,0)='strict and
numberp(inpart(ub,1)) and piece<=-1 then true
else false $
le1u(ub) := /* ub is an upperbound. Returns true if it is <=1,
false otherwise. */
if numberp(ub) and ub<=1 or inpart(ub,0)='strict and
numberp(inpart(ub,1)) and piece<=1 then true
else false $
mgez(x,y) := /* x & y are bounds. Returns x*y. */
if x=0 or y=0 then 0
else if x='inf or y='inf then 'inf
else if inpart(x,0)='strict then
if inpart(y,0)='strict then
strict(mgez(inpart(x,1),inpart(y,1)))
else strict(mgez(inpart(x,1),y))
else if inpart(y,0)='strict then strict(mgez(x,inpart(y,1)))
else x*y $
negl(lb) := /* lb is a lowerbound. Returns true if it is <0,
false otherwise. */
if lb='minf or numberp(lb) and lb<0 or inpart(lb,0)='strict and
(inpart(lb,1)='minf or numberp(piece) and piece<0) then true
else false $
negu(ub) := /* ub is an upperbound. Returns true if it is <0
false otherwise. */
if numberp(ub) and ub<0 or inpart(ub,0)='strict and
numberp(inpart(ub,1)) and piece<=0 then true
else false $
neg8(b) := /* b is a bound. Returns its negative. */
if variablep(b) then
if b='inf then 'minf
else if b='minf then 'inf
else -b
else if inpart(b,0)='strict then strict(neg8(inpart(b,1)))
else -b $
nntonn(x,y) := /* x & y are nonnegative bounds. Returns x**y. */
if y=0 then 1
else if x=0 then 0
else if x='inf then 'inf
else if x=1 then 1
else if y='inf then
if numberp(x) and x<1 or inpart(x,0)='strict and
numberp(inpart(x,1)) and piece<1 then 0
else 'inf
else if inpart(x,0)='strict then
if inpart(y,0)='strict then
strict(nntonn(inpart(x,1),inpart(y,1)))
else strict(nntonn(inpart(x,1),y))
else if inpart(y,0)='strict then strict(nntonn(x,inpart(y,1)))
else ev(x**y,numer) $
nonnegl(lb) := /* lb is a lower bound. Returns true if it is
nonnegative, false otherwise. */
if lb=0 or posl(lb) then true else false $
nonposu(ub) := /* ub is an upperbound. Returns true if it is
positive, false otherwise. */
if ub=0 or negu(ub) then true else false $
posl(lb) := /* lb is a lowerbound. Returns true if it is >0,
false otherwise. */
if numberp(lb) and lb>0 or inpart(lb,0)='strict and
numberp(inpart(lb,1)) and piece>=0 then true
else false $
posu(ub) := /* ub is an upperbound. Returns true if >0,
false otherwise. */
if ub='inf or numberp(ub) and ub>0 or inpart(ub,0)='strict and
(inpart(ub,1)='inf or numberp(piece) and piece>=0) then true
else false $
recipl(ub) := /* ub is an upperbound. Returns its 1/ub. */
if ub = 'inf then 0
else if ub=0 then 'minf
else if inpart(ub,0)='strict then strict(recipl(inpart(ub,1)))
else 1/ub $
recipu(lb) := /* lb is a lowerbound. Returns its 1/lb. */
if lb = 'minf then 0
else if lb=0 then 'inf
else if inpart(lb,0)='strict then
strict(recipu(inpart(lb,1)))
else 1/lb $
/*ubatom(w) := block(/* w is an indeterminate.
Returns its upperbound, printing a message & establishing it as
inf if none existed. */
[ans],
ans: get(w, upperbound),
if ans=false then (print("doing put(", w, ", inf, upperbound)"),
put(w,'inf,upperbound),
ans: 'inf),
return(ans)) $*/
ubatom(w) := block(
[ans],
if w=%e then return(2.718282),
if w=%pi then return(3.141593),
ans: lesses(w),
if ans=[] then (ans:leqs(w),
if ans=[] then ans:'inf
else ans: first(ans))
else ans: strict(first(ans)),
return(ans)) $
unarybnd(name, b, d) := block(/* Name is name of a univariate
nondecreasing function like log, b is a bound of its argument,
and d is plus for a lower bound or minus for an upperbound.
Returns the corresponding bound of name(argument). */
[arg],
if inpart(b,0) = 'strict then
arg: strict(limit(apply(name,[arg]), arg, inpart(b,1), d))
else arg: limit(apply(name,[arg]), arg, b, d),
return(ev(arg,numer))) $
definitecode(a) := block( /*lagrange's */
[n, perm, b, ii, jj, kk, npos, nneg, nzero, nnpos, nnneg, nunkn,
partswitch, prederror],
prederror:false, partswitch: true, n: length(a), perm: [],
npos: nneg: nzero: nnpos: nnneg: nunkn: 0,
for i:n step -1 thru 1 do perm: cons(i, perm),
for i:1 thru n while (npos=0 or nneg=0) do(
jj: i,
while jj<=n and a[ii:perm[jj],ii]=0 do jj: jj+1,
if jj>n then (nzero: n+1-i,
for j:i thru n while npos=0 or nneg=0 do(ii: perm[j],
for k:i thru n do if a[ii,perm[k]]#0 then npos:nneg:1))
else (perm[jj]:perm[i], perm[i]:ii,
b: bounds1(a[ii,ii]),
if posl(b[1]) then npos: npos+1
else if negu(b[2]) then nneg: nneg+1
else if b[1]=0 then
if b[2]=0 then nzero:nzero+1
else nnneg: nnneg+1
else if b[2]=0 then nnpos: nnpos+1
else nunkn: nunkn+1,
for j:i+1 thru n do (jj: perm[j],
b: -a[jj,ii]/a[ii,ii],
for k:i+1 thru n do (kk: perm[k],
a[jj,kk]: a[jj,kk] + b*a[ii,kk])))),
if npos>0 then
if nneg>0 then return(/*indefinite*/ 8)
else if nnpos>0 then return(/*pos semi or indef*/ 5)
else if nunkn=0 then
if nzero=0 and nnneg=0 then return(/*pos def*/ 7)
else return(/*pos semi*/ 6)
else return(/*pos def, pos semi, or indef*/ 5)
else if nneg>0 then
if nnneg>0 then return(/*neg semi or indef*/ 3)
else if nunkn=0 then
if nzero=0 and nnpos=0 then return(/*neg def*/ 1)
else return(/*neg semi*/ 2)
else return(/*neg def, neg semi, or indef*/ 3)
else if nunkn=0 then
if nnpos=0 then
if nnneg=0 then return(/*rank 0*/ 4)
else return(/*pos semi*/ 6)
else if nnneg=0 and nzero=0 then return(/*neg def or semi*/ 2)
else return(/*unknown*/ 9)
else return(/*unknown*/ 9)) $
ttyoff:false $
|