File: qual.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (700 lines) | stat: -rw-r--r-- 26,896 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
ttyoff:true $
load("qualsp");
matchdeclare([utrue,vtrue,wtrue],true)$
tellsimp(qual(utrue), qual1(utrue, listofvars(utrue))) $
tellsimp(qual(utrue,vtrue),qual1(utrue,qual_listify(vtrue))) $
tellsimp(revelation(utrue), revelation1(utrue,200,300)) $
tellsimp(revelation(utrue,vtrue), revelation1(utrue,vtrue,300))$
tellsimp(revelation(utrue,vtrue,wtrue),
   revelation1(utrue,vtrue,wtrue)) $
tellsimp(slopes(utrue),slopes1(utrue,listofvars(utrue)))$
tellsimp(slopes(utrue,vtrue),slopes1(utrue,qual_listify(vtrue)))$
tellsimp(symmetry(utrue),symmetry1(utrue,listofvars(utrue)))$
tellsimp(symmetry(utrue,vtrue),symmetry1(utrue,qual_listify(vtrue)))$
tellsimp(periods(utrue), periods1(utrue,listofvars(utrue))) $
tellsimp(periods(utrue,vtrue),periods1(utrue,qual_listify(vtrue))) $
tellsimp(limits(utrue),limits1(utrue,listofvars(utrue)))$
tellsimp(limits(utrue,vtrue),limits1(utrue,qual_listify(vtrue)))$
tellsimp(stationarypoints(utrue),stationarypoints1(utrue,
   listofvars(utrue)))$
tellsimp(stationarypoints(utrue,vtrue),stationarypoints1(utrue,
   qual_listify(vtrue))) $

variablep(u) := is(atom(u) and not numberp(u) or subvarp(u)) $

qual_listify(u) :=
   if listp(u) then u else [u] $

qual1(u,v) := block(
   revelation1(u, 200, 300),
   return([first(ldisp('bounds=bounds(u))), slopes1(u,v),
      ldisp('curvature=curvature(u)), symmetry1(u:radcan(u),v),
      periods1(u,v), zerosandsingularities(u), limits1(u,v),
      stationarypoints1(u,v)])) $

revelation1(u,umin,revmax) := block(
   [rev, lold, lnew, lu],
   if (lu:?length(?makstring(u)))>umin then (lold:-1,
      for j:1 step 1 while (lnew:?length(?makstring(rev:reveal(u,j))))
            <=revmax and lnew#lold and lnew<lu do(
         disp('reveal("...", ''j) = rev),
         lold:lnew))) $

slopes1(u,v) := block(
   [ans, partswitch, prederror],
   partswitch:true,  prederror:false,  ans: [],
   for x in v do ans: cons(slopes2(u,x), ans),
   return(ans)) $

slopes2(u,x) := block(
   u: bounds1(diff(u,x)),
   return(first(ldisp(slope(x) =
      if posl(u[1]) then 'increasing
      else if negu(u[2]) then 'decreasing
      else if nonnegl(u[1]) then
         if nonposu(u[2]) then 'constant
         else 'nondecreasing
      else if nonposu(u[2]) then 'nonincreasing
      else 'unknown)))) $

curvature(u) := block(
   [v], v:listofvars(u),
   return(['strictconcave, 'concave, 'nonconvex, 'concaveandconvex,
      'nonconcave, 'convex, 'strictconvex,
      'neitherconcavenorconvex, 'unknown]
      [definitecode(qual_hessian(gradient(u,v),v))])) $

qual_hessian(g,v) := block(
   [ans],
   ans:[],
   for x in v do ans: endcons(diff(g,x), ans),
   funmake('matrix, ans))$

gradient(u,v) := block(
   [ans],
   ans: [],
   for x in v do ans: endcons(diff(u,x), ans),
   return(ans)) $


symmetry1(u,v) := block(
   [ans],
   ans: [],
   if u=0 then return(['zero]),
   for x in v do ans: endcons(first(ldisp(symmetries(x)=symmetry2(u,
     x))), ans),
   return(ans)) $

symmetry2(u,x):= block(
   [umx, evn, od, temp, v],
   umx: subst(x=-x, u),
   temp: radcan(u-umx),
   if temp=0 then return('even),
   umx: radcan(u+umx),
   if umx=0 then return('odd),
   if numberp(temp) then evn:'no
   else if length(v:listofvars(umx))=1 then evn:zeroequiv(temp,v)
   else evn: 'unknown,
   if numberp(umx) then od: 'no
   else if length(v:listofvars(umx))=1 then od:zeroequiv(temp,v)
   else od: 'unknown,
   if evn=true then
      if od=true then
         if zeroequiv(u,v)=true then return('probablyzero)
         else return('unknown)
      else return('probablyeven),
   if od=true then return('probablyodd),
   if evn='no then
      if od='no then return('neither)
      else if od=false then return('nonevenandprobablynonodd)
      else return('noneven),
   if od='no then
      if evn=false then return('nonoddandprobablynoneven)
      else return('nonodd),
   if evn=false then
      if od=false then return('probablyneither)
      else return('probablynoneven),
   if od=false then return('probablynonodd),
   return('unknown)) $

periods1(u,v) := block(
   [ans, partswitch],
   partswitch: true,
   u: trigreduce(u),
   ans: [],
   for x in v do ans: endcons(first(ldisp(period(x)=period2(u,
      x))),ans),
   return(ans)) $

period2(u,x) := block(
   [ans],
   if numberp(u) then return(0),
   if variablep(u) then
      if u=x then return('inf)
      else return(0),
   if inpart(u,0)="*" or piece="+" then (
      ans: period2(inpart(u,1), x),
      for j:2 step 1 while ans # 'inf and inpart(u,j) # 'end do
         ans: lcmspec(ans,period2(piece,x)),
      return(ans)),
   if piece="^" then return(lcmspec(
      period2(inpart(u,1),x),period2(inpart(u,2),x))),
   if piece='sin or piece='cos or piece='sec or piece='csc then
      if freeof(x,inpart(u,1)) then return(0)
      else if freeof(x,ans:diff(piece,x)) then return(2*%pi/ans)
      else return('inf),
   if piece='tan or piece='cot then
      if freeof(x,inpart(u,1)) then return(0)
      else if freeof(x,ans:diff(piece,x)) then return(%pi/ans)
      else return('inf),
   return(period2(inpart(u,1),x))) $

lcmspec(u,v) :=
   if u=0 then v
   else if v=0 then u
   else if u='inf or v='inf then 'inf
   else num(u)*num(v)/gcd(num(u)*denom(v), num(v)*denom(u)) $


limits1(u,v) := block(
   [ans, t, partswitch],
   ans: [],
   partswitch: true,
   for x in v do (t: lbatom(x),
      ans : endcons(first(ldisp(limitas(x,t) =
         if inpart(t,0)='strict then strict(limit(u,x,inpart(t,1),
            'plus))
         else limit(u,x,t,'plus))), ans),
      t: ubatom(x),
      ans: endcons(first(ldisp(limitas(x,t) =
         if inpart(t,0)='strict then strict(limit(u,x,inpart(t,1),
            'minus))
         else limit(u,x,t,'minus))), ans)),
   return(ans)) $

zerosandsingularities(u) := block(
   [partswitch, temp, prederror],
   prederror: false,
   partswitch:true,
   u: radcan(trigreduce(u)),
   temp: zp1(factor(ratdenom(u)), zp1(factor(ratnumer(u)),[[],[]])),
   return(ldisp('zeros = first(temp), 'singularities=temp[2])))$

zp1(n,zp) := block(
   [z,p],
   z:first(zp), p:zp[2],
   if not constantp(n) then
      if inpart(n,0)="*" then for j:1 step 1 while inpart(n,j)#'end
         do (if not constantp(piece) then (z:cons(piece=0,z),
            p:conssingularities(p,piece)))
      else(z:cons(n=0,z),
         p:conssingularities(p,n)),
   return([p,z])) $
conssingularities(p,u) := block(
   [bas],
   if variablep(u) then return(p),
   if inpart(u,0)="+" or piece="*" then
      for j:1 step 1 while inpart(u,j)#'end do p:conssingularities(p,piece)
   else if piece="^" and not constantp(bas:inpart(u,1)) then
      if numberp(piece) then (
         if piece<0 then p:cons(bas=0, p))
      else piece: cons(bas=0 and piece<0, p)
   else if piece='log and not numberp(inpart(u,1)) then
      p:cons(piece=0,p)
   else if (piece='tan or piece='sec) and not numberp(inpart(u,1))
      then p: cons(piece-('integer+1/2)*%pi=0, p)
   else if (piece='cot or piece='csc) and not numberp(inpart(u,1))
      then p: cons(piece-'integer*%pi=0, p)
   else if piece='atanh and not numberp(inpart(u,1)) 
      then p: cons(piece-1=0, cons(piece+1=0, p)),
   return(p)) $

stationarypoints1(u,v) := block(
   [singsolve,grindswitch,dispflag,g,ans,uu,s],
   g:gradient(u,v),
   singsolve: grindswitch:  true,
   dispflag: false,
   s:errcatch(ev(solve(g,v),eval)),
   if s=[] or s=[[]] or s=[[false=0]]
      then return(ldisp("no stationary points found")),
   s:first(s),
   ans: ldisp("stationary points" = s),
   uu:[],
   for ss in s do uu: endcons(if length(v)>1 or first(v)=lhs(ss) and
      freeof(first(v),rhs(ss)) then subst(ss,u) else 'unknown ,uu),
   ans:endcons(first(ldisp("corresponding expression values" = uu)),
   ans),
   g: qual_hessian(g,v), uu: [],
   for ss in s do uu: endcons(type(definitecode(subst(ss,g))),uu),
   ans: endcons(first(ldisp("corresponding types" = uu)), ans),
   return(ans)) $

type(u) :=
   ['maximum, 'nonminimum, 'nonminimum, 'unknown, 'nonmaximum,
      'nonmaximum, 'minimum, 'saddle, 'unknown][u] $

bounds(w) := ev(bounds1(w),prederror:false,partswitch:true)$

bounds1(w) := block(/* W is an expression.  Returns list of its
      lower, then upper bounds.  (reference: file qual usage .  In
      comments below, "symbolic" means neither numerical, inf, minf,
      or strict with such an argument. */
  [u, v, t],
  if numberp(w) then return([w,w]),
  if variablep(w) then return([lbatom(w), ubatom(w)]),
  if inpart(w,0) = "+" then (u: bounds1(inpart(w,1)),
    for j:2 step 1 while u#['minf,'inf] and inpart(w,j) # 'end do
      (v: bounds1(piece),
      u: [addbnd(u[1],v[1]), addbnd(u[2],v[2])]),
    return(u)),

  if piece = "*" then (u:bounds1(inpart(w,1)),
    for j:2 step 1 while inpart(w,j) # 'end do (
      v:bounds1(piece),
        /* Try standardizing lowerbound of 1st arg to nonnegative: */
      if nonnegl(u[1]) then u:bndnntimes(u,v)
      else if nonnegl(v[1]) then u:bndnntimes(v,u)
      else if nonposu(u[2]) then u:bndnntimes(bndminus(u),bndminus(v))
      else if nonposu(v[2]) then u:bndnntimes(bndminus(v),bndminus(u))
        /* Try standardizing lowerbound of 1st arg to negative: */
      else if negl(u[1]) then u:bndnegtimes(u,v)
      else if negl(v[1]) then u:bndnegtimes(v,u)
      else if posu(u[2]) then u:bndnegtimes(bndminus(u),bndminus(v))
      else if posu(v[2]) then u:bndnegtimes(bndminus(v),bndminus(u))
        /* Both bounds of both args are symbolic: */
      else (u:[u[1]*v[1], u[1]*v[2], u[2]*v[1], u[2]*v[2]],
        u: [apply('min,u), apply('max,u)])),
      return(u)),

  if piece="^" then (u:bounds1(inpart(w,1)), v:bounds1(inpart(w,2)),
    if posl(u[1]) then
        /*Try standardizing lowerbound of 1st arg to >=1: */
      if ge1l(u[1]) then return(bndge1to(u,v))
      else if le1u(u[2]) then return(bndrecip(bndge1to(bndrecip(u),
        v)))
      else if ge1u(u[2]) then
          /* 0<=u[1]<1 and u[2]>1.  Try standardizing
             lower bound of 2nd arg to nonnegative: */
        if nonnegl(v[1]) then return(bndspan1tonn(u,v))
        else if nonposu(v[2]) then return(bndrecip(bndspan1tonn(u,
          bndminus(v))))
            /* v[1]<1 or symbolic & v[2]>1 or symbolic.  Standardize
               nonsymbolic args of ** to nonneg: */
        else return([min(nntonn(u[1],v[2]),recipl(nntonn(u[2],neg8(
          v[1])))), max(nntonn(u[2],v[2]),recipu(nntonn(u[1],neg8(
          v[1]))))])
            /* 0<=u[1]<1 & u[2] symbolic.  Try standardizing lower
               bound of 2nd arg to nonegative: */
      else if nonnegl(v[1]) then return(bndmayspan1tonn(u,v))
      else if nonposu(v[2]) then
        return(bndrecip(bndmayspan1tonn(u,bndminus(v))))
          /* u[1]<1 & u[2] symbolic: */
      else if posu(v[2]) then
        if negl(v[1]) then return([min(nntonn(u[1],v[2]),u[2]**v[1]),
          max(recipu(nntonn(u[1],neg8(v[1]))), u[2]**v[2])])
            /* v[1] symbolic too, so another possible upperbound:*/
        else return([min(nntonn(u[1],v[2]), u[2]**v[1]),
          max(u[1]**v[1], u[2]**v[2], u[2]**v[1])])
      else if negl(v[1]) then return([min(u[1]**v[2],u[2]**v[2],u[2]
        **v[1]),max(recipu(nntonn(u[1],neg8(v[1]))),u[2]**v[2])])
          /* v[1] & v[2] symbolic.  3 symbolic possibilities for
             each bound: */
      else return([min(u[1]**v[2], u[2]**v[2], u[2]**v[1]),
                   max(u[1]**v[1], u[2]**v[2], u[2]**v[1])])
      /* u[1]=0 or symbolic.  Negatives must not be raised to
         nonintegers: */
    else if integerp(v[1]) and integerp(v[2]) then
      if v[1]=v[2] then  /* interval ** integer: */
        if v[1]>=0 then
          if evnp(v[1]) then
            if nonposu(u[2]) then return([nntonn(neg8(u[2]),v[1]),
              nntonn(neg8(u[1]),v[1])])
                /* interval spanning 0 ** nonnegative integer: */
            else if negl(u[1]) and posu(u[2]) then return([0,
              max(nntonn(u[2],v[1]), nntonn(neg8(u[1]),v[1]))])
                /* u[1] or u[2] symbolic so that maybespan0 **
                   nonnegative even integer: */
            else return([if posu(u[2]) then 0 else u[2]**v[2],
                max(nntonn(neg8(u[1]),v[2]), u[2]**v[2])])
          else return([neg8(nntonn(neg8(u[1]),v[1])),
                   /* Allow for symbolic or either-signed 
                       upper bound of u: */
                 if negu(u[2]) then neg8(nntonn(neg8(u[2]),v[1]))
                 else nntonn(u[2],v[1])])
          /* u[1]<0: */
        else if nonposu(u[2]) then
          if evnp(v[1]) then return(bndrecip(bndge1tonn(bndminus(u),
            bndminus(v))))
          else return(bndminus(bndrecip(bndge1tonn(bndminus(u),
            bndminus(v)))))
        else return(['minf,'inf])
      else if negu(u[2]) then
          /* Try standardizing  lowerbound of 1st arg <=-1: */
        if lem1u(u[2]) then return(bndlem1to(u,v))
        else if gem1l(u[1]) then return(bndlem1to(bndrecip(u)
          ,bndminus(v)))
        else if lem1l(u[1]) then
            /* u[1]<-1 & u[2]>-1.  Try standardizing lower
              bound of v to nonnegative: */
          if nonnegl(v[1]) then return(bndspanm1tonn(u,v))
          else if nonposu(v[2]) then return(bndrecip(bndspanm1tonn(
            u, bndminus(v))))
          else (w: bndlem1tonn(u,v),
              /* v[1]<0 or symbolic & v[2]>0 or symbolic: */
            u: bndlem1tonn(bndrecip(u),bndminus(v)),
            return([min(u[1],w[1]), max(u[2],w[2])]))
              /* u[1] algebraic: */
        else return([lb(w),ub(w)])
      else if v[1]>=0 then (     /* 0<=v[1]<v[2]: */
        if lem1l(u[1]) then t: bndlem1tonn(u,v)
        else if gem1l(u[1]) then 
            /* u[1] symbolic: */
          t: bndrecip(bndlem1tonn(bndrecip([1,u[1]]),v))
        else return([lb(w), ub(w)]),
        if ge1u(u[2]) then u: nntonn(u[2],v[2])
        else if le1u(u[2]) then u: nntonn(u[2],v[1])
          /* u[2] symbolic: */
        else return([lb(w), ub(w)]),
        return([t[1], max(t[2],u)]))
    else if v[2]<0 and negu(u[2]) and posl(u[1]) 
      then return(['minf,'inf])
    else return(['minf, 'inf])),

  if piece='log or piece='atan or piece='erf or piece='sinh or
    piece='asinh or piece='acosh or
    piece='tanh then return(bndunary(piece, bounds(inpart(w,1)))),
  if piece = 'sin or piece = 'cos then return([-1,1]),
  if piece='acot or piece='asech then return(
    reverse(bndunary(piece, bounds(inpart(w,1))))),
  if piece = 'cosh then return([1, 'inf]),
  if piece='sech then return([0,1]),
  if piece='asec then return([0, 3.14159]),
  if piece='acsc then return([-1.57079, 1.57079]),
  if piece='asin or piece='atanh then return(bndrestrict(piece,w)),
  if piece='acos then return(reverse(bndrestrict(piece,w))),
  return(['minf, 'inf])) $

bndrestrict(p,w) := block(
   w:bounds(inpart(w,1)),
   if lem1l(w[1]) then w[1]:-1,
   if ge1u(w[2]) then w[2]:1,
   return(bndunary(p,w))) $

addbnd(b1,b2) := /* b1 and b2 are both lower or both upper
      bounds.  Returns their sum.  Assumes partswitch:true. */
   if b1='inf or b2='inf then 'inf
   else if b1='minf or b2='minf then 'minf
   else if inpart(b1,0)='strict then
      if inpart(b2,0)='strict then
         strict(addbnd(inpart(b1,1), inpart(b2,1)))
      else strict(addbnd(inpart(b1,1), b2))
   else if inpart(b2,0)='strict then strict(addbnd(b1,inpart(b2,1)))
   else b1+b2 $

bndge1to(u,v) := /* u & v are intervals, with u[1]>=1.  Returns
      interval of u**v.  First try standardizing to nonnegative
      lower bound of power: */
   if nonnegl(v[1]) then bndge1tonn(u,v)
   else if nonposu(v[2]) then bndrecip(bndge1tonn(u,bndminus(v)))
   else if negl(v[1]) then
      if posu(v[2]) then [recipl(nntonn(u[2], neg8(v[1]))),
         nntonn(u[2],v[2])]
        /* v[2] symbolic: */
      else [recipl(nntonn(u[2], neg8(v[1]))), max(u[1]**v[2],
         u[2]**v[2])]
      /* v[1] symbolic: */
   else if posu(v[2]) then [min(u[1]**v[1], u[2]**v[1]),
      nntonn(u[2],v[2])]
      /* v[1] and v[2] symbolic: */
   else [min(u[1]**v[1], u[2]**v[1]), max(u[1]**v[2], u[2]**v[2])] $

bndge1tonn(u,v) := /* u & v are intervals with u[2]>=1, v[1]>=0.
      Returns interval of u**v. */
   [nntonn(u[1],v[1]), nntonn(u[2],v[2])] $

bndlem1to(u,v) := /* u and v are intervals with u[2]<=-1 &
      v[1] & v[2] are unequal integers.  Returns interval of u**v. 
      First, standardize to v[2]>0: */
   if v[2]>0 then bndlem1tonn(u,v) 
   else if evnp(v[2]) then [recipl(neg8(nntonn(neg8(u[2]),1-v[2]))),
      recipu(nntonn(neg8(u[2]),-v[2]))]
   else [recipl(neg8(nntonn(neg8(u[2]),-v[2]))), 
      recipu(nntonn(neg8(u[2]),1-v[2]))] $

bndlem1tonn(u,v) := /* u & v are intervals with u[1]>=1, v[2]>1.
      Returns interval for u**v. */
   if evnp(v[2]) then [neg8(nntonn(neg8(u[1]),v[2]-1)),
      nntonn(neg8(u[1]),v[2])]
   else [neg8(nntonn(neg8(u[1]),v[2])),nntonn(neg8(u[1]),v[2]-1)]$

bndmayspan1tonn(u,v) := /* u & v are intervals with 0<=u[1]<1 &
      u[2] symbolic & v[1]>=0.  Returns interval for u**v. */
   [nntonn(u[1],v[2]), max(u[2]**v[1], u[2]**v[2])] $

bndminus(u) := /* u is an interval.  returns interval for -u. */
   [neg8(u[2]), neg8(u[1])] $

bndnntimes(u,v) := /* u & v are intervals with u[1]>=0.  returns
      interval of u*v.  First, try to standardize lower bound
      of 2nd arg to nonnegative too: */
  if nonnegl(v[1]) then bndnntimnn(u,v)
  else if nonposu(v[2]) then bndminus(bndnntimnn(u,bndminus(v)))
  else if negl(v[1]) then
    if posu(v[2]) then [neg8(mgez(u[2],neg8(v[1]))),mgez(u[2],v[2])]
    else [neg8(mgez(u[2],neg8(v[1]))), max(u[1]*v[2], u[2]*v[2])]
  else if posu(v[2]) then [min(u[1]*v[1], u[2]*v[1]), mgez(u[2],v[2])]
  else [min(u[1]*v[1], u[2]*v[1]), max(u[1]*v[2], u[2]*v[2])] $

bndnegtimes(u,v) := /* u & v are intervals with u[1]<0.
      Returns interval of u*v. */
  if posu(u[2]) or posu(v[2]) and negl(v[1]) then 
    [min(neg8(mgez(neg8(u[1]),v[2])), neg8(mgez(u[2],neg8(v[1])))),
    max(mgez(neg8(u[1]),neg8(v[1])), mgez(u[2],v[2]))]
  else if negl(v[1]) then [min(u[2]*v[2], u[2]*v[1], u[1]*v[2]),
    max(mgez(neg8(u[1]), neg8(v[1])), u[2]*v[2])]
  else if posu(v[2]) then [min(u[2]*v[1],neg8(mgez(neg8(u[1]),v[2]))),
    max(u[2]*v[2], u[2]*v[1], u[1]*v[1])]
  else [min(u[2]*v[2], u[2]*v[1], u[1]*v[2]),
    max(u[2]*v[2], u[2]*v[1], u[1]*v[1])] $

bndnntimnn(u,v) := /* u & v are intervals with u[1] & u[2]>=0.
      Returns interval for u*v. */
   [mgez(u[1],v[1]), mgez(u[2],v[2])] $

bndnptonnevn(u,v) := /* u & v are intervals with u[1]<=0 &
      v a nonnegative even integer.  Returns interval of u**v. */
   [nntonn(neg8(u[2]),v[1]), nntonn(neg8(u[1]), v[1])] $

bndrecip(u) := /* u is an interval not containing zzero in its
      interior.  Returns interval of 1/u. */
   [recipl(u[2]), recipu(u[1])] $

bndspan1tonn(u,v) := /* u & v are intervals with 0<=u[1]<1<u[2]
      & v[1]>=0.  Returns interval for u**v. */
   [nntonn(u[1],v[2]), nntonn(u[2],v[2])] $

bndunary(name,u) := /* Name is the name of a univariate
      nondecreasing function such as log, and u is the bounds of its
      argument.  Returns bounds1(name(argument)). */
   [unarybnd(name, u[1], 'plus), unarybnd(name, u[2], 'minus)] $

evnp(b) := /* b is integer. Returns true if it is even & false
      otherwise. */
   if integerp(b/2) then true else false $

gem1l(lb) := /* lb is a lowerbound.  Returns true if it is >=1,
      false otherwise. */
   if numberp(lb) and lb>=-1 or inpart(lb,0)='strict and 
      numberp(inpart(lb,1)) and piece>=-1 then true
   else false $

ge1l(lb) := /* lb is a lowerbound.  Returns true if it is >=1,
      false otherwise. */
   if numberp(lb) and lb>=1 or inpart(lb,0)='strict and numberp(
      inpart(lb,1)) and piece>=1 then true
   else false $

ge1u(ub) := /* ub is an upperbound.  Returns true if it is >=1,
      false otherwise. */
   if ub='inf or numberp(ub) and ub>=1 or inpart(ub,0)='strict and
    (numberp(bounds1(inpart(ub,1))) and piece>1 or piece='inf)then true
   else false $

/*lbatom(w) := block(/* w is an indeterminate.  Returns its
      lowerbound, printing a message and establishing it as minf if
      none existed. */
   [ans],
   ans: get(w, lowerbound),
   if ans=false then (print("doing  put(", w, ", minf, lowerbound)"),
      put(w, 'minf, lowerbound),
      ans:'minf),
   return (ans)) $*/
lbatom(w) := block(
   [ans],
   if w=%e then return(2.718281),
   if w=%pi then return(3.141592),
   ans: greaters(w),
   if ans=[] then (ans:geqs(w),
      if ans=[] then ans:'minf
      else ans: first(ans))
   else ans: strict(first(ans)),
   return(ans)) $

lem1l(lb) := /* lb is a lowerbound.  Returns true if it's <=-1,
      false otherwise. */
   if numberp(lb) and lb<=-1 or lb='minf or inpart(lb,0)='strict and
      (inpart(lb,1)='minf or numberp(piece) and piece<1) then true
   else false $

lem1u(ub) := /* ub is an upperbound.  Returns true if it's <=-1,
      false otherwise. */
   if numberp(ub) and ub<=-1 or inpart(ub,0)='strict and
      numberp(inpart(ub,1)) and piece<=-1 then true
   else false $

le1u(ub) := /* ub is an upperbound.  Returns true if it is <=1,
      false otherwise. */
   if numberp(ub) and ub<=1 or inpart(ub,0)='strict and
      numberp(inpart(ub,1)) and piece<=1 then true
   else false $

mgez(x,y) := /* x & y are bounds.  Returns x*y. */
   if x=0 or y=0 then 0
   else if x='inf or y='inf then 'inf
   else if inpart(x,0)='strict then
      if inpart(y,0)='strict then
         strict(mgez(inpart(x,1),inpart(y,1)))
      else strict(mgez(inpart(x,1),y))
   else if inpart(y,0)='strict then strict(mgez(x,inpart(y,1)))
   else x*y $

negl(lb) := /* lb is a lowerbound.  Returns true if it is <0,
      false otherwise. */
   if lb='minf or numberp(lb) and lb<0 or inpart(lb,0)='strict and
      (inpart(lb,1)='minf or numberp(piece) and piece<0) then true
   else false $

negu(ub) := /* ub is an upperbound.  Returns true if it is <0
      false otherwise. */
   if numberp(ub) and  ub<0 or inpart(ub,0)='strict and
      numberp(inpart(ub,1)) and piece<=0 then true
   else false $

neg8(b) := /* b is a bound.  Returns its negative. */
   if variablep(b) then 
      if b='inf then 'minf
      else if b='minf then 'inf
      else -b
   else if inpart(b,0)='strict then strict(neg8(inpart(b,1)))
   else -b $

nntonn(x,y) := /* x & y are nonnegative bounds. Returns x**y. */
   if y=0 then 1
   else if x=0 then 0
   else if x='inf then 'inf
   else if x=1 then 1
   else if y='inf then
      if numberp(x) and x<1 or inpart(x,0)='strict and
         numberp(inpart(x,1)) and piece<1 then 0
      else 'inf
   else if inpart(x,0)='strict then
      if inpart(y,0)='strict then
         strict(nntonn(inpart(x,1),inpart(y,1)))
      else strict(nntonn(inpart(x,1),y))
   else if inpart(y,0)='strict then strict(nntonn(x,inpart(y,1)))
   else ev(x**y,numer) $

nonnegl(lb) := /* lb is a lower bound.  Returns true if it is 
      nonnegative, false otherwise. */ 
   if lb=0 or posl(lb) then true else false $

nonposu(ub) := /* ub is an upperbound.  Returns true if it is
      positive, false otherwise. */ 
   if ub=0 or negu(ub) then true else false $

posl(lb) := /* lb is a lowerbound.  Returns true if it is >0,
      false otherwise. */
   if numberp(lb) and lb>0 or inpart(lb,0)='strict and
      numberp(inpart(lb,1)) and piece>=0 then true
   else false $

posu(ub) := /* ub is an upperbound.  Returns true if >0,
      false otherwise. */
   if ub='inf or numberp(ub) and ub>0 or inpart(ub,0)='strict and
      (inpart(ub,1)='inf or numberp(piece) and piece>=0) then true
   else false $


recipl(ub) := /* ub is an upperbound.  Returns its 1/ub. */
   if ub = 'inf then 0
   else if ub=0 then 'minf
   else if inpart(ub,0)='strict then strict(recipl(inpart(ub,1)))
   else 1/ub $

recipu(lb) := /* lb is a lowerbound.  Returns its 1/lb. */
   if lb = 'minf then 0
   else if lb=0 then 'inf
   else if inpart(lb,0)='strict then
      strict(recipu(inpart(lb,1)))
   else 1/lb $

/*ubatom(w) := block(/* w is an indeterminate.
      Returns its upperbound, printing a message & establishing it as
      inf if none existed. */
   [ans],
   ans: get(w, upperbound),
   if ans=false then (print("doing  put(", w, ", inf, upperbound)"),
      put(w,'inf,upperbound),
      ans: 'inf),
   return(ans)) $*/
ubatom(w) := block(
   [ans],
   if w=%e then return(2.718282),
   if w=%pi then return(3.141593),
   ans: lesses(w),
   if ans=[] then (ans:leqs(w),
      if ans=[] then ans:'inf
      else ans: first(ans))
   else ans: strict(first(ans)),
   return(ans)) $


unarybnd(name, b, d) := block(/* Name is name of a univariate
      nondecreasing function like log, b is a bound of its argument,
      and d is plus for a lower bound or minus for an upperbound.
      Returns the corresponding bound of name(argument). */
   [arg],
   if inpart(b,0) = 'strict then
      arg: strict(limit(apply(name,[arg]), arg, inpart(b,1), d))
   else arg: limit(apply(name,[arg]), arg, b, d),
   return(ev(arg,numer))) $

definitecode(a) := block( /*lagrange's */
   [n, perm, b, ii, jj, kk, npos, nneg, nzero, nnpos, nnneg, nunkn,
      partswitch, prederror],
   prederror:false,  partswitch: true,  n: length(a),  perm: [],
   npos: nneg: nzero: nnpos: nnneg: nunkn: 0,
   for i:n step -1 thru 1 do perm: cons(i, perm),
   for i:1 thru n while (npos=0 or nneg=0) do(
      jj: i,
      while jj<=n and a[ii:perm[jj],ii]=0 do jj: jj+1,
      if jj>n then (nzero: n+1-i,
         for j:i thru n while npos=0 or nneg=0 do(ii: perm[j],
            for k:i thru n do if a[ii,perm[k]]#0 then npos:nneg:1))
      else (perm[jj]:perm[i],  perm[i]:ii,
         b: bounds1(a[ii,ii]),
         if posl(b[1]) then npos: npos+1
         else if negu(b[2]) then nneg: nneg+1
         else if b[1]=0 then 
            if b[2]=0 then nzero:nzero+1
            else nnneg: nnneg+1
         else if b[2]=0 then nnpos: nnpos+1
         else nunkn: nunkn+1,
         for j:i+1 thru n do (jj: perm[j],
            b: -a[jj,ii]/a[ii,ii],
            for k:i+1 thru n do (kk: perm[k],
               a[jj,kk]: a[jj,kk] + b*a[ii,kk])))),
   if npos>0 then
      if nneg>0 then return(/*indefinite*/ 8)
      else if nnpos>0 then return(/*pos semi or indef*/ 5)
      else if nunkn=0 then
         if nzero=0 and nnneg=0 then return(/*pos def*/ 7)
         else return(/*pos semi*/ 6)
      else return(/*pos def, pos semi, or indef*/ 5)
   else if nneg>0 then
      if nnneg>0 then return(/*neg semi or indef*/ 3)
      else if nunkn=0 then
         if nzero=0 and nnpos=0  then return(/*neg def*/ 1)
         else return(/*neg semi*/ 2)
      else return(/*neg def, neg semi, or indef*/ 3)
   else if nunkn=0 then
      if nnpos=0 then
         if nnneg=0 then return(/*rank 0*/ 4)
         else return(/*pos semi*/ 6)
      else if nnneg=0 and nzero=0 then return(/*neg def or semi*/ 2)
      else return(/*unknown*/ 9)
   else return(/*unknown*/ 9)) $

ttyoff:false $