1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
;;;; COMBINATORICS package for Maxima
;;;;
;;;; Maxima functions to work with permutations.
;;;; $cyclep : predicate function for cycles.
;;;; $permp : predicate function for permutations.
;;;; $permult : permutations product.
;;;; $perm_inverse : inverse of a permutation.
;;;; $permute : permutes a list according to a permutation.
;;;; $apply_cycles : permutes a list according to a list of cycles.
;;;; $perm_undecomp : converts a list of cycles into a permutation.
;;;; $perm_cycles : decomposes a permutation into cycles.
;;;; $perm_lex_rank : permutation's position in lexicographic order.
;;;; $perm_lex_unrank : permutation's position in lexicographic order.
;;;; $perm_length : minimum number of adjacent transpositions.
;;;; $perm_decomp : minimum set of adjacent transpositions to get p.
;;;; $perm_parity : parity of a permutation (0 or 1).
;;;; $perms_lex : lexicographic list of all n-degree permutations
;;;; or permutations within some ranks.
;;;; $perm_lex_next : finds next permutation in lexicographic order.
;;;; $perm_rank : permutation's position in Trotter-Johnson order.
;;;; $perm_unrank : permutation's position in Trotter-Johnson order.
;;;; $perms : n-degree permutations in mimimum-change order
;;;; (Trotter-Johnson) or permutations within some ranks.
;;;; $perm_next : finds next permutation in Trotter-Johnson order.
;;;; $random_perm : generates a random permutation of degree n.
;;;;
;;;; NOTATION
;;;; pm : a permutation as a maxima list
;;;; pa : a permutation as a lisp array
;;;; lpm : a lisp list of pm's (in reverse order)
;;;; lmpm : a maxima list of pm's
;;;; cm : a cycle as a maxima list
;;;; ca : a cycle as a lisp array
;;;; lcm : a lisp list of cycles as maxima lists
;;;; lmcm : a maxima list of cycles as maxima lists
;;;;
;;;; USEFUL COMMANDS
;;;; Turn a pa into a pm:
;;;; (concatenate 'list `((mlist simp)) pa)
;;;;
;;;; Turn an lpm into a maxima list
;;;; `((mlist simp) ,@(nreverse lpm))
;;;;
;;;; MACROS
;;;; Apply transposition [i,j] to a pa (i and j from 1 to n)
;;;; (array-transposition pa i j)
;;;;
;;;; Apply transposition [i,i+1] to a pa (i from 1 to n-1)
;;;; (array-adjacent-transposition pa i)
;;;;
;;;; Turn a pa into a pm and push it to the top of an lpm
;;;; (push-array-mlist pa lpm)
;;;;
;;;; Copyright (C) 2017 Jaime Villate
;;;;
;;;; This program is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU General Public License
;;;; as published by the Free Software Foundation; either version 2
;;;; of the License, or (at your option) any later version.
;;;;
;;;; This program is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;;; GNU General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU General Public License
;;;; along with this program; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
;;;; MA 02110-1301, USA
(in-package :maxima)
(macsyma-module combinatorics)
(defmacro push-array-mlist (pa lpm)
`(push (concatenate (quote list) (quote ((mlist simp))) ,pa) ,lpm))
(defmacro array-adjacent-transposition (pa i)
`(rotatef (aref ,pa (1- ,i)) (aref ,pa ,i)))
(defmacro array-transposition (pa i j)
`(rotatef (aref ,pa (1- ,i)) (aref ,pa (1- ,j))))
;;; $cyclep returns true if its argument is a maxima list of length n or
;;; lower, whose elements are integers between 1 and n, without repetitions.
(defun $cyclep (cm n)
;; a cycle must be a maxima list
(or (and (integerp n) (> n 1)) (return-from $cyclep nil))
(or ($listp cm) (return-from $cyclep nil))
(dolist (i (rest cm))
;; cycle elements must be positive integers, less or equal to n
(or (and (integerp i) (plusp i) (<= i n)) (return-from $cyclep nil))
;; and cannot be repeated
(or (< (count i (rest cm)) 2) (return-from $cyclep nil)))
t)
;;; $permp returns true if its argument is a maxima list of length n,
;;; whose elements are the integers 1, 2, ...n, without repetitions.
(defun $permp (pm)
(or ($listp pm) (return-from $permp nil))
(let ((n ($length pm)))
;; a permutation of degree n is also a valid cycle of degree n
($cyclep pm n)))
(defun check-perm (pm caller)
(let ((s "~M: argument should be a permutation; found: ~M"))
(or ($permp pm) (merror (intl:gettext s) caller pm))))
(defun check-cycle (cm n caller)
(let ((s "~M: argument should be a cycle of degree ~M; found: ~M"))
(or ($cyclep cm n) (merror (intl:gettext s) caller n cm))))
(defun check-list-or-set (lsm caller)
(let ((s "~M: argument should be a list or set; found: ~M"))
(or ($listp lsm) ($setp lsm) (merror (intl:gettext s) caller lsm))))
(defun check-list (lm caller)
(let ((s "~M: argument should be a list; found: ~M"))
(or ($listp lm) (merror (intl:gettext s) caller lm))))
(defun check-list-length (lm n caller)
(let ((s "~M: argument should be a list of length ~M; found: ~M"))
(or (eql ($length lm) n) (merror (intl:gettext s) caller n lm))))
(defun check-pos-integer (n caller)
(let ((s "~M: argument must be a positive integer; found: ~M"))
(or (and (integerp n) (> n 0)) (merror (intl:gettext s) caller n))))
(defun check-integer-n1-n2 (r n1 n2 caller)
(let ((s "~M: argument must be an integer between ~M and ~M; found: ~M"))
(or (and (integerp r) (>= r n1) (<= r n2))
(merror (intl:gettext s) caller n1 n2 r))))
;;; $permult multiplies permutation pm by the permutations in list lmpm
(defun $permult (pm &rest lmpm)
(check-perm pm "permult")
(let ((n ($length pm)) (rm (copy-list pm)))
;; multiplies the current product, rm, by each of the permutations in lmpm
(dolist (qm lmpm)
(check-list-length qm n "permult")
(check-perm qm "permult")
;; the new product, rm, is the current product, rm, times
;; permutation qm: rm = [qm[rm[1]], qm[rm[2]], ..., qm[rm[n]]]
(loop for j from 1 to n do
(setf (nth j rm) (nth (nth j rm) qm))))
rm))
;;; $perm_inverse computes the inverse of permutation p
(defun $perm_inverse (pm)
(check-perm pm "perm_inverse")
(let ((inverse (copy-list pm)))
;; if the element pm[j] of the permutation is equal to i, then
;; the element inverse[i] of the inverse should be equal to j.
(dotimes (j ($length pm))
(setf (nth (nth (1+ j) pm) inverse) (1+ j)))
inverse))
;;; $permute permutes the elements of list (or set) lsm according
;;; to the permutation pm
(defun $permute (pm lsm)
(check-perm pm "permute")
; (check-list-or-set lsm "permute")
(check-list-length lsm ($length pm) "permute")
(let ((result nil))
(dolist (j (reverse (rest pm)))
(setq result (cons (nth j lsm) result)))
(cons (car lsm) result)))
;;; $apply_cycles permutes the elements of list (or set) lsm according to the
;;; list of cycles lmcm, applying the cycles on the end of the list first
(defun $apply_cycles (lmcm lsm)
(check-list lmcm "apply_cycles")
(check-list-or-set lsm "apply_cycles")
(let ((n ($length lsm)) (r (copy-list lsm)) m tmp)
;; iterate the cycles, the last in the list first
(dolist (cm (reverse (rest lmcm)))
(check-cycle cm n "apply_cycles")
(setq m ($length cm))
(setq tmp (nth (nth 1 cm) r))
(loop for i from 1 to (1- m) do
(setf (nth (nth i cm) r) (nth (nth (1+ i) cm) r)))
(setf (nth (nth m cm) r) tmp))
r))
;;; $perm_undecomp converts a list of cycles into a permutation,
;;; equal to their product, by applying $apply_cycles to [1, 2,..., n]
(defun $perm_undecomp (lmcm n)
(check-list lmcm "perm_undecomp")
(check-pos-integer n "perm_undecomp")
($apply_cycles
lmcm `((mlist simp) ,@(loop for i from 1 to n collecting i))))
;;; $perm_cycles decomposes permutation p into a product of canonical
;;; cycles: with lower indices first.
(defun $perm_cycles (pm)
(check-perm pm "perm_cycles")
(let* (i j k cm (n ($length pm)) (result '((mlist simp)))
(v (make-array n :element-type 'bit :initial-element 1)))
;; the i'th bit in bit array v equal to 1 means index i+1 has not been
;; added to any cycles. The next cycle will then start where the first
;; value of 1 is found in v
(while (position 1 v)
(setf i (position 1 v) (bit v i) 0)
;; i= v index where a 1 was found. j=i+1 first index in the current
;; cycle. k=next index in the current cycle
(setq j (1+ i) k j cm `((mlist simp) ,j))
;; if p[k] is different from k, there's a non-trivial cycle
(while (/= (nth k pm) j)
(setf k (nth k pm) cm (append cm (list k)) (bit v (1- k)) 0))
;; a trivial cycle with just one index (length 2) will not be saved
(and (> (length cm) 2) (setq result (append result (list cm)))))
result))
;;; $perm_lex_rank finds the position of the given permutation in
;;; the lexicographic ordering of permutations (from 1 to n!).
;;; Algorithm 2.15: from Kreher & Stinson (1999). Combinatorial Algorithms.
(defun $perm_lex_rank (pm)
(check-perm pm "perm_lex_rank")
(let ((r 1) (n ($length pm)) (qm (copy-list pm)))
(loop for j from 1 to n do
(incf r (* (1- (nth j qm)) (factorial (- n j))))
(loop for i from (1+ j) to n do
(when (> (nth i qm) (nth j qm))
(setf (nth i qm) (1- (nth i qm))))))
r))
;;; $perm_length finds the minimum number of adjacent transpositions
;;; necessary to write permutation p as a product of adjacent transpositions.
(defun $perm_length (pm)
(check-perm pm "perm_length")
(let ((d 0) (n ($length pm)) (qm (copy-list pm)))
(loop for j from 1 to n do
(incf d (* (1- (nth j qm))))
(loop for i from (1+ j) to n do
(when (> (nth i qm) (nth j qm))
(setf (nth i qm) (1- (nth i qm))))))
d))
;;; $perm_decomp finds the minimum set of adjacent transpositions
;;; whose product equals permutation pm.
(defun $perm_decomp (pm)
(check-perm pm "perm_decomp")
(let (lcm (n ($length pm)) (qm (copy-list pm)))
(loop for j from 1 to (1- n) do
(when (>= (1- (nth j qm)) 1)
(loop for i from (+ (- (nth j qm) 2) j) downto j do
(setq lcm (cons `((mlist simp) ,i ,(1+ i)) lcm))))
(loop for k from (1+ j) to n do
(when (> (nth k qm) (nth j qm))
(setf (nth k qm) (1- (nth k qm))))))
(cons '(mlist simp) lcm)))
;;; $perm_parity finds the parity of permutation p (0 or 1).
(defun $perm_parity (pm)
(check-perm pm "perm_parity")
(perm-parity ($length pm) (rest pm)))
;;; perm-parity finds the parity of n first elements of p (lisp list)
;;; Algorithm 2.19 from Kreher & Stinson (1999). Combinatorial Algorithms.
(defun perm-parity (n p)
(let (i (c 0) (a (make-array n :element-type 'bit :initial-element 0)))
(dotimes (j n)
(when (= (bit a j) 0)
(incf c)
(setf (bit a j) 1 i j)
(while (/= (1- (nth i p)) j)
(setf i (1- (nth i p)) (bit a i) 1))))
(mod (- n c) 2)))
;;; $perms_lex returns a list of permutations of degree n in lexicographic order
(defun $perms_lex (n &optional r0 rf)
(check-pos-integer n "perms_lex")
(when r0 (check-integer-n1-n2 r0 1 (factorial n) "perms_lex"))
(when rf (check-integer-n1-n2 rf r0 (factorial n) "perms_lex"))
(let ((pa (make-array n :element-type 'fixnum)) lpm)
(if r0
(progn
(perm-lex-unrank n r0 pa)
(push-array-mlist pa lpm)
(when rf
(dotimes (j (- rf r0))
(perm-lex-next n pa)
(push-array-mlist pa lpm))))
(progn
(dotimes (i n) (setf (aref pa i) (1+ i)))
(push-array-mlist pa lpm)
(while (perm-lex-next n pa)
(push-array-mlist pa lpm))))
`((mlist simp) ,@(nreverse lpm))))
;;; $perm_lex_next finds the next permutation in lexicographic order
(defun $perm_lex_next (pm)
(check-perm pm "perm_lex_next")
(let* ((n ($length pm)) (pa (make-array n :element-type 'fixnum)))
(dotimes (i n)
(setf (aref pa i) (nth (1+ i) pm)))
(unless (perm-lex-next n pa)
(return-from $perm_lex_next nil))
(concatenate 'list '((mlist simp)) pa)))
;;; $perm_lex_unrank finds the n-degree permutation with lexicographic rank r
(defun $perm_lex_unrank (n r)
(check-pos-integer n "perm_lex_unrank")
(check-integer-n1-n2 r 1 (factorial n) "perm_lex_unrank")
(let ((pa (make-array n :element-type 'fixnum)))
(perm-lex-unrank n r pa)
(concatenate 'list `((mlist simp)) pa)))
;;; perm-lex-next finds next permutation in the lexicographic order.
;;; Based on Algorithm 2.14 from Kreher & Stinson (1999). Combinatorial
;;; Algorithms.
(defun perm-lex-next (n pa)
(declare (type (simple-array fixnum *) pa))
(declare (type fixnum n))
(let ((i (1- n)) (j n))
(while (and (> i 0) (< (aref pa i) (aref pa (1- i))))
(decf i))
(when (= i 0) (return-from perm-lex-next nil))
(while (< (aref pa (1- j)) (aref pa (1- i)))
(decf j))
(array-transposition pa i j)
(dotimes (k (floor (/ (- n i) 2)))
(array-transposition pa (+ k i 1) (- n k)))
t))
;;; perm-lex-unrank finds the n-degree permutation of in position
;;; r (from 1 to n!) in the lexicographic ordering of permutations.
;;; Algorithm 2.16: from Kreher & Stinson (1999). Combinatorial Algorithms.
(defun perm-lex-unrank (n r pa)
(declare (type (simple-array fixnum *) pa))
(declare (type fixnum n))
(declare (type fixnum r))
(let (d)
(setf (aref pa (1- n)) 1)
(dotimes (j (1- n))
(setq d (/ (mod (1- r) (factorial (+ j 2))) (factorial (1+ j))))
(decf r (* d (factorial (1+ j))))
(setf (aref pa (- n j 2)) (1+ d))
(loop for i from (- n j 1) to (1- n) do
(when (> (aref pa i) d)
(setf (aref pa i) (1+ (aref pa i))))))
t))
;;; $perms returns a list of the permutations of order n
;;; in Trotter-Johnson ordering, using a simpler algorithm
(defun $perms (n &optional r0 rf)
(check-pos-integer n "perms")
(when r0 (check-integer-n1-n2 r0 1 (factorial n) "perms"))
(when rf (check-integer-n1-n2 rf r0 (factorial n) "perms"))
(let ((pa (make-array n :element-type 'fixnum)) lpm)
(if r0
(progn
(perm-unrank n r0 pa)
(push-array-mlist pa lpm)
(when rf
(loop for r from r0 to (- rf 1) do
(array-adjacent-transposition pa (transposition-next n r))
(push-array-mlist pa lpm))))
(progn
(dotimes (i n) (setf (aref pa i) (1+ i)))
(push-array-mlist pa lpm)
(loop for r from 1 to (1- (factorial n)) do
(array-adjacent-transposition pa (transposition-next n r))
(push-array-mlist pa lpm))))
`((mlist simp) ,@(nreverse lpm))))
;;; $perm_next finds the next permutation in Trotter-Johnson ordering
(defun $perm_next (pm)
(check-perm pm "perm_next")
(let ((n ($length pm)) (r ($perm_rank pm)) (qm (copy-list pm)) i)
(when (= r (factorial n)) (return-from $perm_next nil))
(setq i (transposition-next n r))
(rotatef (nth i qm) (nth (1+ i) qm))
qm))
;;; $perm_unrank finds the n-degree permutation with Trotter-Johnson rank r
(defun $perm_unrank (n r)
(check-pos-integer n "perm_unrank")
(check-integer-n1-n2 r 1 (factorial n) "perm_unrank")
(let ((pa (make-array n :element-type 'fixnum)))
(perm-unrank n r pa)
(concatenate 'list `((mlist simp)) pa)))
;;; $perm_rank finds the position of the given permutation in
;;; the Trotter-Johnson ordering of permutations (from 1 to n!).
;;; Algorithm 2.17: from Kreher & Stinson (1999). Combinatorial Algorithms.
(defun $perm_rank (pm)
(check-perm pm "perm_rank")
(let (i k (r 1) (n ($length pm)))
(loop for j from 2 to n do
(setq k 1 i 1)
(while (/= (nth i pm) j)
(and (< (nth i pm) j) (incf k))
(incf i))
(if (= (mod r 2) 1)
(setq r (- (+ (* j r) 1) k))
(setq r (+ (* j (1- r)) k))))
r))
;;; perm-unrank returns the n-degree permutation in position r
;;; (from 1 to n!) in the Trotter-Johnson ordering of permutations.
;;; Algorithm 2.18: from Kreher & Stinson (1999). Combinatorial Algorithms.
(defun perm-unrank (n r pa)
(declare (type (simple-array fixnum *) pa))
(declare (type fixnum n))
(declare (type fixnum r))
(let (r1 (r2 0) k)
(setf (aref pa 0) 1)
(loop for j from 2 to n do
(setq r1 (floor (/ (* (1- r) (factorial j)) (factorial n))))
(setq k (- r1 (* j r2)))
(if (= (mod r2 2) 0)
(progn
(loop for i from (1- j) downto (- j k) do
(setf (aref pa i) (aref pa (1- i))))
(setf (aref pa (- j k 1)) j))
(progn
(loop for i from (1- j) downto (1+ k) do
(setf (aref pa i) (aref pa (1- i))))
(setf (aref pa k) j)))
(setq r2 r1))))
;;; transposition-next finds the first index of the adjacent transposition
;;; to be applied to the n-degree permutation of Trotter-Johnson rank r, in
;;; order to get the permutation of rank r+1 (r must be between 1 and n!-1)
(defun transposition-next (n r)
(let ((d 0) m k)
(setf (values m k) (floor r n))
(while (= k 0)
(setq r m)
(decf n)
(when (= (mod m 2) 1) (incf d))
(setf (values m k) (floor r n)))
(if (= (mod m 2) 0)
(+ (- n k) d)
(+ k d))))
;;; $random_perm generates a random permutation of degree n, using algorithm
;;; 5.4 from Reingold, Nievergelt and Deo. Combinatorial algorithms: theory and
;;; practice. 1977
(defun $random_perm (n)
(check-pos-integer n "random_perm")
(let ((pm (cons '(mlist) (loop for i from 1 to n collecting i))))
(loop for i from n downto 2 do
(rotatef (nth i pm) (nth (1+ ($random i)) pm)))
pm))
|