1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
|
/* COPYRIGHT NOTICE
Copyright (C) 2005-2017 Mario Rodriguez Riotorto
This program is free software; you can redistribute
it and/or modify it under the terms of the
GNU General Public License as published by
the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details at
http://www.gnu.org/copyleft/gpl.html
*/
/* INTRODUCTION
This is a set of Maxima functions for descriptive statistics.
This library supports two types of data:
a) lists storing univariate samples, like [34,23,76,45,32,...]
Example:
(%i1) mean([a,b,c]);
c + b + a
(%o1) ---------
3
b) matrices storing multivariate samples, like
matrix([34,44,23],[87,23,54],....); in this case, the number
of columns equals the dimension of the multivariate random
variable, and the number of rows is the sample size.
Example:
(%i2) matrix([a,b],[c,d],[e,f]);
[ a b ]
[ ]
(%o2) [ c d ]
[ ]
[ e f ]
(%i3) mean(%);
e + c + a f + d + b
(%o3) [---------, ---------]
3 3
Lists of multiple samples with equal or different sizes are not
directly supported, but you can use the function 'map' as in the
following example:
(%i4) map(mean,[[a,b,c],[a,b]]);
c + b + a b + a
(%o4) [---------, -----]
3 2
These are the functions implemented in this library,
(see comments bellow for interpretation):
Data manipulation
continuous_freq: frequencies for continuous data
discrete_freq: frequencies for discrete data
subsample: subsample extraction
Univariate descriptive statistics:
mean: sample mean
smin: sample minimum value
smax: sample maximum value
range: the range
noncentral_moment: non central moment
central_moment: central moment
var: variance (divided by n)
std: standard deviation based on var
var1: variance (divided by n-1)
std1: standard deviation based on var1
median: median
quantile: p-quantile
qrange: interquartilic range
skewness: skewness coefficient
kurtosis: kurtosis coefficient
harmonic_mean: harmonic mean
geometric_mean: geometric mean
cv: variation coefficient
mean_deviation: mean deviation
median_deviation: median deviation
pearson_skewness: Pearson's skewness coefficient
quartile_skewness: quartilic skewness coefficient
km: Kaplan-Meier estimator of the survival function
cdf_empirical: empirical cumulative distribution function
Multivariate descriptive statistics:
cov: covariance matrix (divided by n)
cov1: covariance matrix (divided by n-1)
cor: correlation matrix
global_variances: gives a list with
total variance
mean variance
generalized variance
generalized standard deviation
effective variance
effective standard deviation
list_correlations: gives a list with
precision matrix
multiple correlation coefficients
partial correlation coefficients
principal_components
Statistical diagrams:
- scatterplot
- histogram
- barsplot
- boxplot
- piechart
- stemplot
- starplot
References:
Johnson, A.J., Wichern, D.W. (1998) Applied Multivariate Statistical
Analysis. Prentice Hall.
Pe~na, D. (2002) An'alisis de datos multivariantes. McGraw-Hill.
Thanks to Robert Dodier and Barton Willis for their help.
For questions, suggestions, bugs and the like, feel free
to contact me at
riotorto AT yahoo DOT com
http://tecnostats.net
*/
put('descriptive, 1, 'version) $
if not get('draw,'version) then load("draw") $
load("descriptive_util.lisp");
/* AUXILIARY FUNCTIONS */
/* Computes the trace of a matrix */
matrixtrace(m):=block([n:length(m)],
if matrixp(m) and n=length(m[1])
then apply("+",makelist(m[i,i],i,1,n)))$
/* True if the argument is a list of numbers, false otherwise. */
listofnumbersp(y):=listp(y) and every('identity,map('numberp,y))$
/* True if the argument is a list containing */
/* no lists, false otherwise. */
listofexpr(y):=listp(y) and not some('identity,map('listp,y))$
/* True if the argument is a list of lists containing only numbers, */
/* false otherwise. */
listoflistsp(y):=listp(y) and every('identity,map('listofnumbersp,y))$
/* True if the argument is a list of lists, all of */
/* them of equal size. */
listsofequalsize(y) :=
listp(y) and
every('listp, y) and
every(lambda([z], length(z) = length(y[1])), y) $
/* DATA TRANSFORMATION */
/* Sub-sample matrix selection. */
/* Example: subsample(m,lambda([v],v[1]<3 and v[4]=A),3,2) */
/* gives the 3rd an 2nd components, in this order, of */
/* those rows of matrix m whose first component is */
/* less than 3 and fourth component equals A. */
subsample(mat,cond,[cols]):=
block([tempvect, tempmat:[]],
if length(cols)=0
then cols: makelist(i,i,1,length(mat[1])),
for obs in mat do
if cond(obs)
then
(tempvect: [],
for i in cols do
tempvect: endcons(obs[i], tempvect),
tempmat: endcons(tempvect, tempmat)),
apply('matrix, tempmat))$
/* Subtract the mean and divide by the standard deviation */
standardize(m) :=
if listofexpr(m)
then (m-mean(m)) / std(m)
elseif listoflistsp(m)
then makelist(standardize(k), k, m)
elseif matrixp(m)
then block([av, dev, m2: copymatrix(m)],
av: mean(m2),
dev: std1(m2),
for k:1 thru length(m2) do m2[k] : (m2[k]-av) / dev,
m2)
else error("standardize: unknown data format") $
/* Returns a new matrix with transformed, repeated, reordered, or removed columns */
transform_sample(m, varnames, expressions) :=
block([tm],
if matrixp(m)
then (tm: args(transpose(m)),
transpose(apply('matrix, map('ev, psubst(map("=",varnames,tm), expressions)))))
else error("transform_sample: argument must be a matrix")) $
/* Builds a sample from a table of absolute frequencies. */
/* The input table can be a matrix or a list of lists, all of */
/* them of equal size. The number of columns or the length of */
/* the lists must be greater than 1. The last element of each */
/* row or list is interpreted as the absolute frequency. */
/* The output is always a sample in matrix form */
build_sample(tbl) :=
block([i:gensym()],
if matrixp(tbl)
then tbl: args(tbl)
elseif not listsofequalsize(tbl)
then error("Table frequency has not the correct format"),
apply('matrix,
apply(append,
map(lambda([a],
block([butlast: reverse(rest(reverse(a)))],
makelist(butlast,i,1,last(a)))),tbl)))) $
/* FREQUENCY COUNTERS */
/* Divides the range in intervals and counts how many values */
/* are inside them. The second argument is optional and either */
/* equals the number of classes we want; 10 by default, OR */
/* equals a list containing the class limits and the number of */
/* classes we want, OR a list containing only the limits. */
/* If sample values are all equal, this function returns only */
/* one class of amplitude 2 */
continuous_freq (lis, [opt]) :=
if listp(lis)
then apply (continuous_freq_array, cons (fillarray (make_array (any, length (lis)), lis), opt))
elseif ?arrayp(lis)
then apply (continuous_freq_array, cons (lis, opt))
else error ("continuous_freq: argument must be a list or Lisp array; found: ", lis);
continuous_freq_array (lis,[opt]):=block([nc,mini,maxi,lim,amp,fr,ult,n,k,index,bins],
if ?length(lis) = 0
then [[minf, inf], [0]]
elseif length(opt) > 0 and setp(opt[1])
then /* arbitrary bins */
( lim: sort(listify(opt[1])),
mini: first(lim),
maxi: last(lim),
if mini = maxi
then error("continuous_freq: at least two bin numbers are needed.")
else ( bins: makelist([lim[i], lim[i + 1]], i, 1, length(lim) - 1),
fr: count_array_by_bins (lis, bins),
[lim,fr]))
else /* bins of equal amplitude */
(if length(opt) > 0
then /* either a list comprising min, max, and number of classes,
* or a list comprising just min and max,
* or a number of classes
*/
(if length(opt) = 1 and listp(opt[1])
then (if length(opt[1]) = 2 or length(opt[1]) = 3
then ([mini, maxi]: [opt[1][1], opt[1][2]],
if length(opt[1]) = 3
then nc: opt[1][3]
else nc: 10))
elseif length(opt) = 1 and integerp(opt[1])
then ([mini, maxi]: vector_min_max (lis),
nc:opt[1])
else
error ("continuous_freq: unrecognized optional argument:", opt))
else /* default classes */
([mini, maxi] : vector_min_max (lis),
nc: 10),
lim:[mini],
amp:(maxi-mini)/nc,
if amp=0
then [[mini-1,maxi+1],[?length(lis)]]
else ( for i:1 thru nc do lim:endcons(mini+amp*i,lim),
bins : makelist ([lim[i], lim[i + 1]], i, 1, length(lim) - 1),
fr : count_array_by_bins (lis, bins),
[lim,fr])) )$
count_by_bins (xx, bins) :=
if listp(xx)
then count_array_by_bins (fillarray (make_array (any, length (xx)), xx), bins)
elseif ?arrayp(xx)
then count_array_by_bins (xx, bins);
count_array_by_bins (xx, bins) := block ([counts : makelist (0, length (bins))],
xx : ?sort (?copy\-seq (xx), 'orderlessp),
for k thru length (bins)
do block ([i_first : find_index_first (xx, bins[k][1],
if k > 1 and bins[k][1] = bins[k - 1][2] then ">" else ">="),
i_last : find_index_last (xx, bins[k][2], "<=")],
counts[k] : if i_last = false or i_first = false then 0 else i_last - i_first + 1),
counts);
/* assume xx is a sorted Lisp array; find least i s.t. xx[i] > x or xx[i] >= x */
find_index_first (xx, x, comparison) := block ([n : ?length (xx)],
if comparison(xx[n - 1], x)
then if comparison(xx[0], x)
then 0
else find_index_first_1 (xx, x, 0, n - 1, comparison));
find_index_first_1 (xx, x, i0, i1, comparison) :=
if i1 - i0 <= 1 then i1
else
block ([i : floor (i0 + (i1 - i0) / 2)],
if comparison(xx[i], x)
then find_index_first_1 (xx, x, i0, i, comparison)
else find_index_first_1 (xx, x, i, i1, comparison));
/* assume xx is a sorted Lisp array; find greatest i s.t. xx[i] < x or xx[i] <= x */
find_index_last (xx, x, comparison) := block ([n : ?length (xx)],
if comparison(xx[0], x)
then if comparison(xx[n - 1], x)
then n - 1
else find_index_last_1 (xx, x, 0, n - 1, comparison));
find_index_last_1 (xx, x, i0, i1, comparison) :=
if i1 - i0 <= 1 then i0
else
block ([i : floor (i0 + (i1 - i0) / 2)],
if comparison(xx[i], x)
then find_index_last_1 (xx, x, i, i1, comparison)
else find_index_last_1 (xx, x, i0, i, comparison));
/* Counts the frequency of each element in 'lis', its elements */
/* can be numbers, Maxima expressions or strings. */
discrete_freq (l) :=
if listp(l)
then discrete_freq_array (fillarray (make_array (any, length (l)), l))
elseif ?arrayp(l)
then discrete_freq_array (l)
else error ("discrete_freq: argument must be a list or Lisp array; found: ", l);
discrete_freq_array (a) := block ([u],
a : ?sort (?copy\-seq (a), 'orderlessp),
u : unique_in_sorted_array (a),
[u, map (lambda ([u1], find_index_last (a, u1, lambda ([x,y], not ordergreatp(x, y)))
- find_index_first (a, u1, lambda([x,y], not orderlessp(x, y)))
+ 1),
u)]);
/* UNIVARIATE DESCRIPTIVE STATISTICS */
/* Arithmetic mean */
mean (x, [w]) :=
block ([listarith: true, sum_w, n],
n: length(x),
[w, sum_w]: if w = [] then [1, n] else [w[1], if listp (w[1]) then lsum (w1, w1, w[1]) else n*w[1]],
verify_weights ('mean, w, n),
if listp(x) or matrixp(x)
then block ([e: apply ("+", w * args(x)) / sum_w],
ratsimp_nonnumeric (e))
else error("mean: first argument must be a list or matrix; found", x));
verify_weights (fn, w, n) :=
block ([negative_weights],
if listp(w)
then (if length(w) # n
then error (fn, ": expected", n, "weights, found", length(w))
elseif length (negative_weights: sublist (w, lambda ([w1], w1 < 0))) > 0
then error (fn, ": expected all weights nonnegative, found", negative_weights)
elseif equal (lsum (w1, w1, w), 0)
then error (fn, ": expected sum of weights to be positive, found 0"))
else (if not (numberp (w) and equal (w, 1))
then error (fn, ": weight can only be 1, if not a list; found", w)));
/* We want to return algebraic results in a standard form,
* but avoid replacing floats and bigfloats with rationals.
* keepfloat preserves floats, but not bigfloats, therefore it's necessary
* to inspect element by element. This is kind of terrible.
*/
ratsimp_nonnumeric (e) :=
if numberp(e)
then e
elseif listp(e)
then map (ratsimp_nonnumeric, e)
else block ([keepfloat: true], ratsimp(e));
/* Minimum value */
smin(x):=block([t],
if matrixp(x)
then (t:transpose(x),
makelist(lmin(t[i]),i,1,length(t)))
else if listofexpr(x)
then lmin(x)
else error("Input to 'smin' must be a list of expressions or a matrix"))$
/* Maximum value */
smax(x):=block([t],
if matrixp(x)
then (t:transpose(x),
makelist(lmax(t[i]),i,1,length(t)))
else if listofexpr(x)
then lmax(x)
else error("Input to 'smax' must be a list of expressions or a matrix"))$
/* mini and maxi are maintained for backward compatibility,
but removed from documentation. */
mini(x):= smin(x) $
maxi(x):= smax(x) $
/* Range */
range(x):=block([t],
if matrixp(x)
then (t:transpose(x),
makelist(range(t[i]),i,1,length(t)))
else if listofexpr(x)
then lmax(x) - lmin(x)
else error("Input to 'range' must be a list of expressions or a matrix"))$
/* Non central moment of order m */
noncentral_moment (x, m, [w]) :=
block ([listarith: true],
if matrixp(x) or listp(x)
then (if matrixp(x) then x: args(x),
w: if w = [] then 1 else w[1],
mean (map (lambda ([x1], x1^m), x), w))
else error ("noncentral_moment: first argument must be a list or matrix; found", x));
/* Central moment of order m */
central_moment (x, m, [w]) :=
block ([listarith: true, mean_x],
if matrixp(x) or listp(x)
then (if matrixp(x) then x: args(x),
w: if w = [] then 1 else w[1],
mean_x: mean (x, w),
mean (map (lambda ([x1], (x1 - mean_x)^m), x), w))
else error ("central_moment: first argument must be a list or matrix; found", x));
/* Maximum likelihood estimator of variance */
var (x, [w]):=
(w: if w = [] then 1 else w[1],
central_moment (x, 2, w))$
/* Standard deviation as the root square of var */
std (x, [w]) :=
(w: if w = [] then 1 else w[1],
sqrt (var (x, w)));
/* Unbiased estimator of variance (divided by n-1) */
var1 (x, [w]):=
block ([n: length(x),
w: if w = [] then 1 else w[1]],
var(x, w) * n/(n - 1));
/* Standard deviation as the root square of var1 */
std1 (x, [w]) :=
block ([listarith: true],
w: if w = [] then 1 else w[1],
sqrt (var1 (x, w)))$
/* Median */
median(x):=block([n,s,t],
if listofexpr(x)
then (n:length(x),
s:sort(x),
if oddp(n)
then s[(n+1) / 2]
else (s[n/2] + s[n/2 + 1]) / 2 )
else if matrixp(x)
then (t:transpose(x),
makelist(median(t[i]),i,1,length(t)))
else error("Input to 'median' must be a list of expressions or a matrix"))$
/* p-quantile, with 0<=p<=1. Linear interpolation */
quantile(x,p):=block([n,s,pos,int,dif,t],
if numberp(p) and p>=0 and p<=1
then if listofexpr(x)
then (n:length(x),
s:sort(x),
pos:p*(n-1)+1,
int:floor(pos),
dif:pos-int,
if abs(dif)<1.0e-15
then s[int]
else (1-dif)*s[int]+dif*s[int+1])
else if matrixp(x)
then (t:transpose(x),
makelist(quantile(t[i],p),i,1,length(t)))
else error("First argument of 'quantile' must be a list of expressions or a matrix")
else error("Second argument of 'quantile' must be a probability") )$
/* Interquartilic range */
qrange(x):=block([t],
if matrixp(x)
then (t:transpose(x),
makelist(qrange(t[i]),i,1,length(t)))
else if listofexpr(x)
then quantile(x,3/4)-quantile(x,1/4)
else error("Input to 'qrange' must be a list of expressions or a matrix"))$
/* Skewness coefficient */
skewness(x):=block([listarith:true],central_moment(x,3)/std(x)^3)$
/* Kurtosis coefficient, sometimes called kurtosis excess (see the -3) */
kurtosis(x):=block([listarith:true],central_moment(x,4)/var(x)^2 - 3)$
/* Harmonic mean */
harmonic_mean(x):=block([listarith:true],
if listofexpr(x) or matrixp(x)
then length(x) / apply("+", 1/args(x))
else error("Input to 'harmonic_mean' must be a list of expressions or a matrix"))$
/* Geometric mean */
geometric_mean(x):=block([listarith:true],
if listofexpr(x) or matrixp(x)
then apply("*", args(x))^(1/length(x))
else error("Input to 'geometric_mean' must be a list of expressions or a matrix"))$
/* Variation coefficient */
cv(x):=block([listarith:true], std(x) / mean(x))$
/* Mean deviation */
mean_deviation(x):=block([t,listarith:true],
if matrixp(x)
then (t:transpose(x),
makelist(mean(abs(t[i]-mean(t[i]))),i,1,length(t)))
else if listofexpr(x)
then mean(abs(x-mean(x)))
else error("Input to 'mean_deviation' must be a list of expressions or a matrix"))$
/* Median deviation */
median_deviation(x):=block([t,listarith:true],
if matrixp(x)
then (t:transpose(x),
makelist(median(abs(t[i]-median(t[i]))),i,1,length(t)))
else if listofexpr(x)
then median(abs(x-median(x)))
else error("Input to 'median_deviation' must be a list of expressions or a matrix"))$
/* Pearson's skewness */
pearson_skewness(x):=block([t,listarith:true],
if matrixp(x)
then (t:transpose(x),
3*makelist((mean(t[i])-median(t[i]))/std1(t[i]),i,1,length(t)))
else if listofexpr(x)
then 3*(mean(x)-median(x))/std1(x)
else error("Input to 'pearson_skewness' must be a list of expressions or a matrix"))$
/* Quartile skewness */
quartile_skewness(x):=block([q1,q2,q3,t],
if matrixp(x)
then (t:transpose(x),
makelist(quartile_skewness(t[i]),i,1,length(t)))
else if listofexpr(x)
then (q1:quantile(x,1/4),
q2:quantile(x,1/2),
q3:quantile(x,3/4),
(q3-2*q2+q1)/(q3-q1))
else error("Input to 'quartile_skewness' must be a list of expressions or a matrix"))$
/* Kaplan-Meier estimator of the survival function S(x) = 1-F(x). */
/* First argument x is a list of pairs or a two column matrix. The first */
/* component is the observed time, and the second component a censoring */
/* index (1=non censored, 0=right censored). */
/* The second optional argument of function km is the name of the variable, */
/* which is x by default. Example calls are: */
/* km([[2,1], [3,1], [5,0], [8,1]]); */
/* km(matrix([2,1], [3,1], [5,0], [8,1]), 't); */
km(x,[var]):=
block([s,ss,t,st,n,d,c,i:2,idx:1,hatS,vn],
if length(var) > 0 and atom(var[1])
then vn: var[1]
else vn: 'x,
if matrixp(x)
then x: args(x),
s: sort(x),
ss: length(x),
t: subsample(s,lambda([z], second(z)=1),1),
if length(t) = 0
then /* only censored data */
return(1),
t: append([0],listify(setify(first(transpose(t))))),
st: length(t),
n: makelist(0,k,st),
d: makelist(0,k,st),
c: makelist(0,k,st),
n[1]: ss,
while i <= st do
(n[i]: n[i-1] - d[i-1] - c[i-1],
while idx <= ss and s[idx][1] <= t[i] do
(if s[idx][2] = 1
then d[i]: d[i] + 1
elseif s[idx][1] < t[i]
then n[i]: n[i] - 1
else c[i]: c[i] + 1,
idx: idx + 1),
i: i + 1 ),
hatS: 1- d / n,
for k:2 thru st do
hatS[k]: hatS[k-1] * hatS[k],
charfun(vn < 0) +
sum(charfun(t[i-1] <= vn and vn < t[i]) * hatS[i-1], i, 2, st) +
charfun(t[st] <= vn) * hatS[st] ) $
/* Empirical distribution function F(x). */
/* First argument x is a list of numbers or a one column matrix. */
/* The second optional argument is the name of the variable, x by default. */
/* Example calls are: */
/* cdf_empirical([1,3,3,5,7,7,7,8,9]); */
/* cdf_empirical(transpose(matrix([1,3,3,5,7,7,7,8,9])), 'u); */
cdf_empirical(x,[var]):=
block([vn,tb,hatF:0,actual,i:1],
if length(var) > 0 and atom(var[1])
then vn: var[1]
else vn: 'x,
if matrixp(x)
then if length(x[1])=1
then x: sort(args(transpose(x)))
else error("cdf_empirical: input matrix must have only one column")
else x: sort(x),
tb: discrete_freq(x),
apply("+", map(lambda([z1,z2], z2*charfun(vn >= z1)),first(tb),second(tb)))/length(x)) $
/* MULTIVARIATE DESCRIPTIVE STATISTICS */
/* Covariance matrix */
cov(x):=block([n:length(x),dim,m,xi,sum],
if not matrixp(x)
then error("cov: the argument is not a matrix")
else (m:matrix(mean(x)),
dim:length(x[1]),
sum:zeromatrix(dim,dim),
for i:1 thru n do(
xi:matrix(x[i]),
sum:sum+transpose(xi).xi),
sum/n - transpose(m).m) )$
/* Covariance matrix (divided by n-1). The argument x must be a matrix */
cov1(x):=block([n:length(x)], cov(x)*n/(n-1))$
/* A list of global variation measures. The argument x must be a matrix */
/* 1) total variance */
/* 2) mean variance */
/* 3) generalized variance */
/* 4) generalized standard deviation */
/* 5) effective variance */
/* 6) effective standard deviation */
/* Admits the following options: */
/* 'data='true: x stores sampled data and the covariance matrix 'cov1' */
/* must be computed; if false, x is the covariance matrix and 'cov1' */
/* is not recalculated. */
global_variances(x,[select]):=
block([s,p,aux,options,defaults,out:[]],
/* this is for backcompatibility */
if length(select)=1 and member(select[1], [true,false])
then select: ['data=select[1]],
/* check user options */
options: ['data],
defaults: [true],
for i in select do(
aux: ?position(lhs(i),options),
if numberp(aux) and aux <= length(options) and aux >= 1
then defaults[aux]: rhs(i)),
if matrixp(x)
then(if defaults[1] /* does the matrix contain sample records? */
then s:cov1(x)
else s:x,
p:length(s), /* dimension */
aux:matrixtrace(s),
out:cons(aux,out), /* total variance */
out:endcons(aux/p,out), /* mean variance */
aux:determinant(s),
out:endcons(aux,out), /* generalized variance */
out:endcons(sqrt(aux),out), /* generalized standard deviation */
aux:aux^(1/p),
out:endcons(aux,out), /* effective variance */
out:endcons(sqrt(aux),out), /* effective standard deviation */
out )
else error("global_variances: the argument is not a matrix") )$
/* Correlation matrix. The argument x must be a matrix. */
/* cor(x,false)==> x is the covariance matrix and 'cov1' */
/* is not recalculated */
/* Admits the following options: */
/* 'data='true: x stores sampled data and the covariance matrix 'cov1' */
/* must be computed; if false, x is the covariance matrix and 'cov1' */
/* is not recalculated. */
cor(x,[select]):=
block([m,s,d,defaults,options],
/* this is for backcompatibility */
if length(select)=1 and member(select[1], [true,false])
then select: ['data=select[1]],
/* check user options */
options: ['data],
defaults: [true],
for i in select do(
aux: ?position(lhs(i),options),
if numberp(aux) and aux <= length(options) and aux >= 1
then defaults[aux]: rhs(i)),
if matrixp(x)
then(if defaults[1] /* does the matrix contain sample records? */
then s:cov1(x)
else s:x,
m:length(s),
d:sqrt(sum(ematrix(m,m,1/s[i,i],i,i),i,1,m)),
d.s.d)
else error("cor: the argument is not a matrix") )$
/* Returns a list of dependence measures. The argument x must be a matrix. */
/* 1) precision matrix */
/* 2) multiple correlation */
/* 3) partial correlation */
/* Admits the following options: */
/* 'data='true: x stores sampled data and the covariance matrix 'cov1' */
/* must be computed; if false, x is the covariance matrix and 'cov1' */
/* is not recalculated. */
list_correlations(x,[select]):=
block([s,p,s1,d,options,defaults,out:[],listarith:true],
/* this is for backcompatibility */
if length(select)=1 and member(select[1], [true,false])
then select: ['data=select[1]],
/* check user options */
options: ['data],
defaults: [true],
for i in select do(
aux: ?position(lhs(i),options),
if numberp(aux) and aux <= length(options) and aux >= 1
then defaults[aux]: rhs(i)),
if matrixp(x)
then(if defaults[1] /* does the matrix contain sample records? */
then s:cov1(x)
else s:x,
p:length(s), /* dimension */
s1:invert(s),
d:zeromatrix(p,p),
for i:1 thru p do d[i,i]:1/sqrt(s1[i,i]),
[s1, /* precision matrix */
1-1/makelist(s[i,i]*s1[i,i],i,1,p), /* mult. corr. */
-d.s1.d] /* part. corr. */ )
else error("list_correlations: the argument is not a matrix"))$
/* Principal components analysis for multivariate data. */
/* The argument x must be a matrix. This function returns a list containing: */
/* 1) Variances of the principal components in descending order */
/* 2) Proportions (%) of total variance explained by principal components */
/* 3) Matrix of coefficients for principal components */
/* Admits the following options: */
/* 'data='true: x stores sampled data and the covariance matrix 'cov1' must be */
/* computed; if false, x is the covariance matrix and 'cov1' is not */
/* recalculated. */
principal_components(x,[select]):=
block([options,defaults,aux,s,p,val,vec,ord,percents,listarith:true],
/* check user options */
options: ['data],
defaults: [true],
for i in select do(
aux: ?position(lhs(i),options),
if numberp(aux) and aux <= length(options) and aux >= 1
then defaults[aux]: rhs(i)),
/* go ahead with calculations */
if matrixp(x)
then(if defaults[1] /* does the matrix contain sample records? */
then s:cov1(x)
else s:x,
p:length(s), /* sample dimension */
[val,vec]: eigens_by_jacobi(s),
ord: sort(makelist([val[k], col(vec,k)], k, p), lambda([u,v], first(u)>=first(v))),
val: map(first, ord),
vec: apply(addcol, map(second, ord)),
percents: 100 * val / apply("+", val),
[val, percents, vec])
else error("principal_components: the argument is not a matrix"))$
/* PLOTTING FUNCTIONS */
random_color():=
block([obase : 16, col : "#"],
for i : 1 thru 6 do
col : concat(col,
block([sz : concat(random(16))],
substring(sz, slength(sz)))),
col)$
extract_options(s,[mo]):=
block([ss:[],mmo:[]],
for k in s do
if member(lhs(k), mo)
then mmo: endcons(k,mmo)
else ss : endcons(k,ss),
[ss,mmo] )$
/* Plots scatter diagrams. */
scatterplot_description(m,[select]):=
block([localopts],
[select, localopts]: extract_options(select,'nclasses,'htics,'frequency),
if listofnumbersp(m) or matrixp(m) and (length(m)=1 or length(m[1])=1)
then (/* m is a list of numbers or a column or a row matrix */
if matrixp(m)
then if length(m)=1
then m: m[1]
else m: transpose(m)[1],
gr2d(select, points(makelist([x,0],x,m))))
elseif listp(m) and every('identity,map(lambda([z],listofnumbersp(z) and length(z)=2),m)) or
matrixp(m) and length(m[1])=2 then
/* m is a two-dimensional sample */
gr2d(select, points(args(m)))
elseif matrixp(m) and length(m[1])>2 then
/* m is an d-dimensional (d>2) sample */
block([n: length(m[1]), gr],
gr: ['columns = n],
for i:1 thru n do
for j:1 thru n do
gr: endcons(
if i=j
then gr2d(apply('histogram_description,
append([col(m,i)],select,localopts)))
else apply('scatterplot_description,
append([subsample(m,lambda([v],true),i,j)],select)) ,
gr),
gr)
else error("sorry, can't plot the scatter diagram for these data")) $
scatterplot([desc]) := draw(apply('scatterplot_description, desc)) $
wxscatterplot([desc]) := wxdraw(apply('scatterplot_description, desc)) $
/* Histograms. Argument 'm' must be a list, a one column matrix or a */
/* one row matrix. */
/* */
/* Specific options (defaults in parentheses): */
/* - nclasses (10): number of classes, a positive integer, or */
/* a set of bin numbers. Also, it can be given */
/* the name of one of the three optimal algo- */
/* rithms available: 'fd, 'scott, or 'sturges. */
/* - frequency (absolute): 'absolute', 'relative', 'density' or */
/* 'percent' */
/* - htics (auto): 'auto, 'endpoints, 'intervals, list of labels */
/* */
/* Draw options affecting this object: */
/* - key */
/* - color (used for labels) */
/* - fill_color */
/* - fill_density */
/* - line_width */
/* histogram modifies the following options: */
/* - xrange */
/* - yrange */
/* - xtics */
histogram_skyline: false;
make_skyline (xx, yy, fill_color, fill_density) :=
block ([skyline_interior, skyline_initial, skyline_final, skyline_points, n: length(xx)],
skyline_interior: apply (append, makelist ([[xx[k], yy[k - 1]], [xx[k], yy[k]]], k, 2, n - 1)),
skyline_initial: [[xx[1], 0], [xx[1], yy[1]]],
skyline_final: [[xx[n], yy[n - 1]], [xx[n], 0]],
skyline_points: append (skyline_initial, skyline_interior, skyline_final),
['xaxis = true,
'border = false,
'fill_color = fill_color,
'fill_density = fill_density,
polygon (skyline_points),
'color = fill_color,
'points_joined = true,
'point_type = 'none,
'points (skyline_points)]);
histogram_description(m,[select]):=
block([fr,amp,scen,before,localopts,num_classes,v,lbels, my_fill_color, my_fill_density,
/* specific options */
my_nclasses:10, my_frequency:'absolute, my_htics:'auto, histogram_bars, histogram_drawing],
[before, localopts]: extract_options (select, 'nclasses, 'frequency, 'htics, 'fill_color, 'fill_density),
/* This business about finding option values is kind of terrible.
* Ideally there would be some logic in the draw package to handle
* the hierarchy of option settings.
*/
(my_fill_color: assoc ('fill_color, localopts)) # false
or (my_fill_color: assoc ('fill_color, get_draw_defaults ())) # false
or (my_fill_color: "#ff0000"), /* default from share/draw/grcommon.lisp */
(my_fill_density: assoc ('fill_density, localopts)) # false
or (my_fill_density: assoc ('fill_density, get_draw_defaults ())) # false
or (my_fill_density: 0), /* default "not filled" */
for k in localopts do
if lhs(k) = 'nclasses
then my_nclasses: rhs(k)
elseif lhs(k) = 'frequency
then my_frequency: rhs(k)
elseif lhs(k) = 'htics
then my_htics: rhs(k),
if listp(my_nclasses)
then ( v: length(my_nclasses),
if v = 2
then num_classes: 10
elseif v = 3
then num_classes: third(my_nclasses)
else error("histogram: the second argument is not a list of two or three elements") )
elseif setp(my_nclasses)
then ( num_classes: length(my_nclasses)-1,
if num_classes < 1
then error("histogram: at least two bin numbers are needed"))
elseif integerp(my_nclasses) and my_nclasses < 1
then error("histogram: number of classes must be an integer greater than two")
elseif integerp(my_nclasses) and my_nclasses > 0
then num_classes: my_nclasses
elseif not member(my_nclasses, ['fd, 'scott, 'sturges])
/* for optimal cases, computation of num_classes is delayed */
then error("histogram: incorrect format for option nclasses"),
if not member(my_frequency, ['absolute, 'relative, 'percent, 'density])
then error("histogram: frenquency must be either absolute, relative, density or percent"),
if not member(my_htics, ['auto, 'endpoints, 'intervals]) and
not listp(my_htics)
then error("histogram: incorrect format in option htics"),
/* if m is a list of numbers or a column or a row matrix then */
/* plots a simple histogram. */
if listofnumbersp(m) or matrixp(m) and (length(m)=1 or length(m[1])=1)
then (/* transform input data into a list */
if matrixp(m)
then if length(m)=1
then m: m[1]
else m: transpose(m)[1],
/* frequency table */
/* first, calculate num_clases for the optimal cases */
if my_nclasses = 'fd /* Robust Freedman - Diaconis method */
then ( h: qrange(m),
if h = 0
then h: 2 * median(abs(m-median(m))), /* twice median absolute deviation */
if h > 0
then my_nclasses: num_classes: ceiling(range(m) / (2 * h * length(m)^(-1/3)))
else my_nclasses: num_classes: 1 ),
if my_nclasses = 'scott /* Scott's method to be applied under Gaussian assumptions */
then ( if length(m) = 1
then error("histogram: with Scott's method, sample size must be greater than 1"),
h: 3.5 * std1(m) * length(m)^(-1/3),
if h > 0
then my_nclasses: num_classes: ceiling(range(m) / h)
else my_nclasses: num_classes: 1 ),
if my_nclasses = 'sturges /* Sturges' method to be applied under Gaussian assumptions and n < 200 */
then my_nclasses: num_classes:
ceiling(1 + log(length(m)) / 0.6931471805599453), /* <-- log(2) */
fr: float(continuous_freq(m,my_nclasses)),
if member(my_frequency, ['relative, 'percent])
then fr: [first(fr), second(fr) / apply("+", second(fr))],
if my_frequency = 'percent
then fr[2]: fr[2] * 100.0,
amp: makelist(fr[1][i+1]-fr[1][i], i, 1, length(fr[1])-1),
if my_frequency = 'density
then fr: [first(fr), second(fr) / apply("+", second(fr) * amp)],
/* histogram tics */
if my_htics = 'auto
then my_htics: []
elseif my_htics = 'endpoints
then my_htics: xtics = setify(fr[1])
elseif my_htics = 'intervals
then ( lbels: [concat("[",fr[1][1],",",fr[1][2],"]")],
lbels: append(lbels, makelist(concat("(",fr[1][k],",",fr[1][k+1],"]"),k,2,num_classes)),
lbels: makelist([lbels[k],fr[1][k]+amp[k]/2],k,1,num_classes),
my_htics: xtics = makeset([a,b],[a,b],lbels) )
elseif listp(my_htics)
then ( if length(my_htics) < num_classes
then my_htics: append(my_htics, makelist("",k,length(my_htics)+1,num_classes)),
lbels: makelist([my_htics[k],fr[1][k]+amp[k]/2],k,1,num_classes),
my_htics: xtics = makeset([a,b],[a,b],lbels) ),
histogram_bars: apply ('bars, makelist ([(fr[1][k] + fr[1][k + 1])/2, fr[2][k], amp[k]], k, 1, length (fr[1]) - 1)),
histogram_drawing:
if histogram_skyline
then make_skyline (fr[1], fr[2], my_fill_color, my_fill_density)
else ['fill_color = my_fill_color, 'fill_density = my_fill_density, histogram_bars],
scen: append ([before,
'xrange = [first(fr[1]), last(fr[1])] + [-1,+1] * mean(amp)/2,
'yrange = lmax(fr[2])*[-0.05, 1.05],
my_htics],
histogram_drawing))
else error("histogram: can't plot the histogram for these data") )$
histogram([desc]) := draw2d(apply(histogram_description, desc)) $
wxhistogram([desc]) := wxdraw2d(apply(histogram_description, desc)) $
/* Plots bar charts for discrete or categorical data, both for one or more */
/* samples. This function admits an arbitrary number of arguments. */
/* The first arguments are lists or matrices with sample data. The rest of */
/* arguments are specific options in equation format (option = value). */
/* */
/* Specific options: */
/* - box_width (3/4): a number between zero and 1. */
/* - grouping (clustered): or 'stacked'. */
/* - groups_gap (1): distance between clusters, must be a positive */
/* integer. */
/* - bars_colors ([]): list of colors for bars. If the list is shorter */
/* than the number of samples, colors are generated randomly. */
/* - frequency (absolute): 'absolute', 'relative' or 'percent'. */
/* - ordering (orderlessp): 'orderlessp' or 'ordergreatp'. */
/* - sample_keys ([]): entries for legend. */
/* - start_at (0): starting point on the x axis. */
/* */
/* Draw options affecting this object: */
/* - key */
/* - color (used for labels) */
/* - fill_color */
/* - fill_density */
/* - line_width */
/* barsplot modifies the following options: */
/* - xtics */
barsplot_description([args]):=
block([lastsample: 0, nargs: length(args), freqs: [], samplespace,
sspacesize, nsamples, totalgap, expr, before, localopts,
/* specific options */
my_box_width: 3/4, my_groups_gap: 1, my_frequency: 'absolute,
my_ordering: 'orderlessp, my_bars_colors: [], my_sample_keys: [],
my_grouping: 'clustered, my_start_at: 0 ],
/* looks for data */
for i:1 thru nargs while (listp(args[i]) or matrixp(args[i])) do
lastsample: lastsample + 1,
[before, localopts]:
extract_options(
makelist(args[k],k,lastsample+1,length(args)),
'box_width,'grouping,'groups_gap,'bars_colors,'frequency,'ordering,'sample_keys,'start_at),
for k in localopts do
if lhs(k) = 'box_width
then my_box_width: float(rhs(k))
elseif lhs(k) = 'grouping
then my_grouping: rhs(k)
elseif lhs(k) = 'groups_gap
then my_groups_gap: rhs(k)
elseif lhs(k) = 'bars_colors
then my_bars_colors: rhs(k)
elseif lhs(k) = 'frequency
then my_frequency: rhs(k)
elseif lhs(k) = 'ordering
then my_ordering: rhs(k)
elseif lhs(k) = 'sample_keys
then my_sample_keys: rhs(k)
elseif lhs(k) = 'start_at
then my_start_at: float(rhs(k)),
if my_box_width > 1 or my_box_width < 0
then error("barsplot: illegal value for box_width"),
if not member(my_grouping, ['clustered, 'stacked])
then error("barsplot: unrecognized grouping style"),
if not integerp(my_groups_gap) or my_groups_gap < 1
then error("barsplot: illegal value for groups_gap"),
if not listp(my_bars_colors)
then error("barsplot: illegal value for bars_colors"),
if not member(my_frequency, ['absolute, 'relative, 'percent])
then error("barsplot: frenquency must be either absolute, relative or percent"),
if not member(my_ordering, [orderlessp, ordergreatp])
then error("barsplot: illegal value for ordering"),
if not (my_sample_keys = []
or listp(my_sample_keys) and every('stringp, my_sample_keys))
then error("barsplot: illegal value for sample_keys"),
if not numberp(my_start_at)
then error("barsplot: non numeric value for start_at option"),
/* get absolute frequencies */
for k: 1 thru lastsample do (
if listp(args[k])
then freqs: endcons(discrete_freq(args[k]), freqs)
elseif matrixp(args[k])
then for c in args(transpose(args[k])) do
freqs: endcons(discrete_freq(c), freqs)
else error("barsplot: unknown data format")),
/* transform freqs into a more suitable form */
samplespace: sort(listify(setify(apply('append,map('first,freqs)))), my_ordering),
sspacesize: length(samplespace),
nsamples: length(freqs),
if my_sample_keys = []
then my_sample_keys : makelist("",k,1,nsamples),
if nsamples # length(my_sample_keys)
then error("barsplot: incorrect number of elements in sample_keys"),
freqs: makelist(
makelist(
block([pos: ?position(k,first(i))],
if pos = false
then 0
else second(i)[pos]),
i, freqs),
k,samplespace),
/* transform to relative frequencies, if necessary */
if member(my_frequency, ['relative, 'percent])
then block([samplesizes: apply("+",freqs)],
freqs: map(lambda([z], z/samplesizes), freqs)),
if my_frequency = 'percent
then freqs: 100.0 * freqs,
/* complete my_bars_colors with random colors, if necessary */
if nsamples > length(my_bars_colors)
then my_bars_colors: append(my_bars_colors,
makelist(random_color(),k,length(my_bars_colors)+1,nsamples)),
if my_grouping = 'clustered
then ( /* clustered bars */
totalgap: nsamples + my_groups_gap,
append(
before,
[points([[my_start_at,0]]), xtics = 'none],
makelist(
['fill_color = my_bars_colors[m],
'key = my_sample_keys[m],
apply('bars,
makelist(
[my_start_at+(k-1)*totalgap + m, freqs[k][m], my_box_width],
k,1,sspacesize))],
m,1,nsamples),
[apply(
label,
makelist(
[string(samplespace[k]),
my_start_at+(k-1)*totalgap + (nsamples+1)/2,
lmax(freqs[k])],
k, 1, sspacesize))],
['key=""] ))
else ( /* stacked bars */
totalgap: my_groups_gap,
freqs: map(lambda([z], reverse(makelist(block([s:0], for i:1 thru k do s: s+z[i], s),k,1,length(z)))), freqs),
append(
before,
[points([[my_start_at,0]]), xtics = 'none],
makelist(
['fill_color = my_bars_colors[m],
'key = my_sample_keys[m],
apply('bars,
makelist(
[my_start_at+(k-1)*totalgap, freqs[k][m], my_box_width],
k,1,sspacesize))],
m,1,nsamples),
[apply(
label,
makelist(
[string(samplespace[k]),
my_start_at+(k-1)*totalgap,
lmax(freqs[k])],
k, 1, sspacesize))],
['key=""] )) )$
barsplot([desc]) := draw2d(apply(barsplot_description, desc)) $
wxbarsplot([desc]) := wxdraw2d(apply(barsplot_description, desc)) $
/* Plots pie charts for discrete or categorical data. Argument 'm' must be a */
/* list, a one column matrix or a one row matrix. The rest of arguments are */
/* specific options in equation format (option = value). */
/* */
/* Specific options: */
/* - sector_colors ([]): list of colors for sectors. If the list is */
/* shorter than the number of sectors, colors are generated randomly. */
/* - pie_center ([0,0]): a pair of numbers */
/* - pie_radius (1): a positive number. */
/* */
/* Draw options affecting this object: */
/* - key */
/* - color (used for labels) */
/* - fill_density */
/* - line_width */
/* This object modifies the following options: */
/* - key */
piechart_description(m,[select]):=
block([fr,tot,degrees,ini,end:0,alpha,hexcolor,conver:float(%pi/180),
sectors,before,localopts,
/* specific options */
my_sector_colors:[],my_pie_center:[0,0],my_pie_radius:1],
[before, localopts]: extract_options(select,'sector_colors,'pie_center,'pie_radius),
for k in localopts do
if lhs(k) = 'sector_colors
then my_sector_colors: rhs(k)
elseif lhs(k) = 'pie_center
then my_pie_center: float(rhs(k))
elseif lhs(k) = 'pie_radius
then my_pie_radius: float(rhs(k)),
if not listp(my_sector_colors)
then error("piechart: illegal value for sector_colors"),
if not numberp(my_pie_radius) or my_pie_radius <= 0
then error("piechart: radius must be greater than zero"),
if not listp(my_pie_center) or length(my_pie_center) # 2 or
not every(numberp, my_pie_center)
then error("piechart: center must be a list of numbers"),
if listofexpr(m) or matrixp(m) and (length(m)=1 or length(m[1])=1)
then (/* transform input data into a list */
if matrixp(m)
then if length(m)=1
then m: m[1]
else m: transpose(m)[1],
/* frequency table */
fr: discrete_freq(m),
tot: length(fr[1]),
degrees: 360.0 * fr[2] / apply("+", fr[2]),
/* complete my_sector_colors with random colors, if necessary */
if tot > length(my_sector_colors)
then my_sector_colors:
append(my_sector_colors,
makelist(random_color(),k,length(my_sector_colors)+1,tot)),
/* build the object */
[before,
makelist((ini: end,
end: ini + degrees[i],
alpha: ini+degrees[i]/2.0,
hexcolor: random_color(),
[ 'color = my_sector_colors[i],
'fill_color = my_sector_colors[i],
'key = string(fr[1][i]),
ellipse(my_pie_center[1],my_pie_center[2],
my_pie_radius,my_pie_radius,
ini,degrees[i]) ])
,i,1,tot)] )
else error("piechart: can't plot the piechart for these data") )$
piechart([desc]) := draw2d(apply(piechart_description, desc)) $
wxpiechart([desc]) := wxdraw2d(apply(piechart_description, desc)) $
/* Plots box-whisker diagrams. Argument 'm' must be a list of numbers or a matrix. */
/* The second and consecutive arguments are specific options. */
/* */
/* Specific options: */
/* - box_width (3/4): widths for boxes */
/* - box_orientation (vertical): 'vertical' or 'horizontal' */
/* - range (inf): sets outliers boundaries */
/* - outliers_size (1): outliers size */
/* */
/* Draw options affecting this object: */
/* - key */
/* - color */
/* - line_width */
/* This object modifies the following options: */
/* - points_joined */
/* - point_size */
/* - point_type */
/* - xtics */
/* - ytics */
/* - xrange */
/* - yrange */
boxplot_description(m,[select]):=
block([fr,tot,top:0,bot:inf,before,localopts,p,out:[],
/* specific options*/
my_box_width:3/4, my_box_orientation:'vertical, my_range:'inf, my_outliers_size:1],
[before, localopts]: extract_options(select,'box_width,'box_orientation,'range,'outliers_size),
for k in localopts do
if lhs(k) = 'box_width
then my_box_width: float(rhs(k))
elseif lhs(k) = 'box_orientation
then my_box_orientation: rhs(k)
elseif lhs(k) = 'range
then my_range: float(rhs(k))
elseif lhs(k) = 'outliers_size
then my_outliers_size: float(rhs(k)),
if not floatp(my_box_width) or my_box_width < 0 or my_box_width > 1
then error("boxplot: illegal value for option box_width"),
if not member(my_box_orientation, ['vertical, 'horizontal])
then error("boxplot: illegal value for option box_orientation"),
if my_range # 'inf and (not floatp(my_range) or my_range < 0)
then error("boxplot: illegal value for option range"),
if not floatp(my_outliers_size) or my_outliers_size < 0
then error("boxplot: illegal outliers point size"),
/* if m is not a row matrix, transpose it */
if matrixp(m) and length(m)>1
then m: transpose(m),
/* if m is a list of numbers, transform it */
/* to the form [[n1,n2,....]] */
if listofnumbersp(m) then m: [m],
/* plot boxes */
if listoflistsp(m) or matrixp(m)
then(
tot: length(m),
[ before,
['points_joined = true,
'point_size = 0,
'point_type = 'dot],
makelist(
block([mi, ma,
mini: smin(m[x]),
maxi: smax(m[x]),
q1: float(quantile(m[x],0.25)),
q2: float(quantile(m[x],0.5)),
q3: float(quantile(m[x],0.75)),
w: float(boxplot_width),
w2: my_box_width/2,
w4: my_box_width/4,
A,B,C,D,E,F,G,H,I,J,K,L,M,N],
top: max(top, maxi),
bot: min(bot, mini),
if my_range = 'inf
then /* ignore possible outliers */
[mi, ma]: float([mini, maxi])
else /* calculate whisker positions */
block([in:[],
lowlim: q1-my_range*(q3-q1),
upplim: q3+my_range*(q3-q1)],
for k in m[x] do
if k < lowlim or k > upplim
then /* accumulate new outliers to global variable out */
out: cons([x,k], out)
else in: cons(k, in),
mi: lmin(in),
ma: lmax(in)),
A: [x-w2,q1], B: [x-w2,q3], C: [x+w2,q3],
D: [x+w2,q1], E: [x-w2,q2], F: [x+w2,q2],
G: [x,q3], H: [x,ma], I: [x-w4,ma],
J: [x+w4,ma], K: [x,q1], L: [x,mi],
M: [x-w4,mi], N: [x+w4,mi],
p: [A,B,C,D,E,F,G,H,I,J,K,L,M,N],
if my_box_orientation = 'horizontal
then p: map(reverse,p),
[ points([p[1],p[2],p[3],p[4],p[1]]),
points([p[5],p[6]]),
points([p[7],p[8]]),
points([p[9],p[10]]),
points([p[11],p[12]]),
points([p[13],p[14]]) ]),
x,1,tot),
/* plot all outliers as isolated points */
if length(out) > 0
then (if my_box_orientation = 'horizontal
then out: map(reverse,out),
['points_joined = false,
'point_size = my_outliers_size,
'point_type = 'circle,
points(out)])
else [],
if my_box_orientation = 'vertical
then [ 'xtics = setify(makelist(k,k,1,tot)),
'xrange = (tot-1)*0.05*[-1,+1.5]+[0.5,tot+0.5],
'yrange = (top-bot)*0.05*[-1,+1]+[bot,top] ]
else [ 'ytics = setify(makelist(k,k,1,tot)),
'yrange = (tot-1)*0.05*[-1,+1.5]+[0.5,tot+0.5],
'xrange = (top-bot)*0.05*[-1,+1]+[bot,top] ] ])
else error("sorry, can't plot the box-whisker plot for these data"))$
boxplot([desc]) := draw2d(apply(boxplot_description, desc)) $
wxboxplot([desc]) := wxdraw2d(apply(boxplot_description, desc)) $
/* Plots stem and leaf diagrams. Argument 'm' must be a list, a one */
/* column matrix or a one row matrix. */
/* */
/* Specific options: */
/* - leaf_unit (1): indicates the unit of the leaves; must be a */
/* power of 10 */
stemplot(m,[select]):=
block([localopts,d,s,si,l,lf,index,n,key,offset,
/* specific options*/
my_leaf_unit: 1],
[select, localopts]: extract_options(select,'leaf_unit),
for k in localopts do
if lhs(k) = 'leaf_unit then my_leaf_unit: rhs(k),
if numberp(my_leaf_unit) and my_leaf_unit > 0
then my_leaf_unit: 10^round(log(my_leaf_unit)/log(10))
else error("stemplot: illegal value for option leaf_unit"),
if listofexpr(m) or matrixp(m) and (length(m)=1 or length(m[1])=1)
then (/* transform input data into a list */
if matrixp(m)
then if length(m)=1
then m: m[1]
else m: transpose(m)[1],
d: my_leaf_unit*map('round,m/my_leaf_unit),
s: map('floor,d/(10*my_leaf_unit)),
l: map('floor,d/my_leaf_unit),
l: l-10*s,
si: listify(setify(s)),
lf: makelist([],i,1,length(si)),
for k:1 thru length(s) do (
index:1,
while s[k]>si[index] do index:index+1,
lf[index]:append(lf[index],[l[k]]) ),
lf: map('sort,lf),
offset: slength(concat("",si[length(si)])),
for k:1 thru length(si) do (
lv: "",
for n:1 thru length(lf[k]) do lv:concat(lv,lf[k][n]),
printf(true,concat("~",offset,"d|",lv,"~%"),si[k]) ),
key: 63*my_leaf_unit,
print("key: 6|3 = ",if my_leaf_unit<1 then float(key) else key),
'done )
else error("stemplot: can't plot the stemplot for these data") )$
/* Plots star charts for discrete or categorical data, both for one or more*/
/* samples. This function admits an arbitrary number of arguments. */
/* The first arguments are lists or matrices with sample data. The rest of */
/* arguments are specific options in equation format (option = value). */
/* */
/* Specific options: */
/* - stars_colors ([]): list of colors for stars. If the list is shorter*/
/* than the number of samples, colors are generated randomly. */
/* - frequency (absolute): 'absolute' or 'relative'. */
/* - ordering (orderlessp): 'orderlessp' or 'ordergreatp'. */
/* - sample_keys ([]): entries for legend. */
/* - star_center ([0,0]): a pair of numbers */
/* - star_radius (1): a positive number. */
/* Draw options affecting this object: */
/* - key */
/* - color */
/* - line_width */
/* starplot modifies the following options: */
/* - xtics */
starplot_description([args]):=
block([lastsample: 0, nargs: length(args), freqs: [], samplespace,
sspacesize, nsamples, before, localopts, maxfreq, angle, cpnts,
/* specific options */
my_stars_colors: [], my_frequency: 'absolute, my_ordering: 'orderlessp,
my_sample_keys: [], my_star_center: [0,0], my_star_radius: 1],
/* looks for data */
for i:1 thru nargs while (listp(args[i]) or matrixp(args[i])) do
lastsample: lastsample + 1,
[before, localopts]:
extract_options(
makelist(args[k],k,lastsample+1,length(args)),
'stars_colors,'frequency,'ordering,'sample_keys,'star_center,'star_radius),
for k in localopts do
if lhs(k) = 'stars_colors
then my_stars_colors: rhs(k)
elseif lhs(k) = 'frequency
then my_frequency: rhs(k)
elseif lhs(k) = 'ordering
then my_ordering: rhs(k)
elseif lhs(k) = 'sample_keys
then my_sample_keys: rhs(k)
elseif lhs(k) = 'star_center
then my_star_center: float(rhs(k))
elseif lhs(k) = 'star_radius
then my_star_radius: float(rhs(k)),
if not listp(my_stars_colors)
then error("starplot: illegal value for stars_colors"),
if not member(my_frequency, ['absolute, 'relative])
then error("starplot: frenquency must be either absolute, relative or percent"),
if not member(my_ordering, [orderlessp, ordergreatp])
then error("starplot: illegal value for ordering"),
if not (my_sample_keys = []
or listp(my_sample_keys) and every('stringp, my_sample_keys))
then error("starplot: illegal value for sample_keys"),
if not numberp(my_star_radius) or my_star_radius <= 0
then error("starplot: radius must be greater than zero"),
if not listp(my_star_center) or length(my_star_center) # 2 or
not every(numberp, my_star_center)
then error("starplot: center must be a list of numbers"),
/* get absolute frequencies */
for k: 1 thru lastsample do (
if listp(args[k])
then freqs: endcons(discrete_freq(args[k]), freqs)
elseif matrixp(args[k])
then for c in args(transpose(args[k])) do
freqs: endcons(discrete_freq(c), freqs)
else error("starplot: unknown data format")),
samplespace: sort(listify(setify(apply('append,map('first,freqs)))), my_ordering),
sspacesize: length(samplespace),
nsamples: length(freqs),
angle: float(2*%pi/sspacesize),
if my_sample_keys = []
then my_sample_keys : makelist("",k,1,nsamples),
if nsamples # length(my_sample_keys)
then error("starplot: incorrect number of elements in sample_keys"),
/* transform to relative frequencies, if necessary */
if member(my_frequency, ['relative, 'percent])
then freqs: makelist(block([ssinv: float(1 / apply("+", second(k)))],
if my_frequency = 'percent then ssinv: 100*ssinv,
[first(k), ssinv*second(k)]),
k, freqs),
maxfreq: lmax(flatten(map(second, freqs))),
/* complete my_stars_colors with random colors, if necessary */
if nsamples > length(my_stars_colors)
then my_stars_colors: append(my_stars_colors,
makelist(random_color(),k,length(my_stars_colors)+1,nsamples)),
/* calculate circle points */
cpnts: makelist(
block(
[this_ang: k*angle],
[cos(this_ang), sin(this_ang)]),
k, 1, sspacesize),
/* return draw object */
append(
/* draw the radii and the circular grid */
['points_joined = true, 'point_type = 'dot, 'color = 'black],
map(lambda([z], points([my_star_center, z+my_star_center])),
my_star_radius*cpnts),
[apply(label, maplist(cons,
maplist(string, samplespace),
map(lambda([z], z+my_star_center), 1.05*my_star_radius*cpnts)))],
before,
/* draw the stars */
makelist(
[ 'color = my_stars_colors[s],
'key = my_sample_keys[s],
block([pnts],
pnts: makelist(
block([pos],
pos: ?position(samplespace[k], freqs[s][1]),
if pos = false
then my_star_center
else my_star_radius * freqs[s][2][pos] /
maxfreq * cpnts[k] + my_star_center),
k, 1, sspacesize),
points(cons(last(pnts), pnts)) ) ],
s, 1, nsamples),
['key = ""]) )$
starplot([desc]) := draw2d(apply(starplot_description, desc)) $
wxstarplot([desc]) := wxdraw2d(apply(starplot_description, desc)) $
/* find_runs -- find consecutive identical values in an array or list.
* Returns a structure runs(...) with fields lengths and values.
*/
defstruct (runs (lengths, values));
find_runs (x) :=
if x = [] then runs ([], [])
else block ([dx : map (lambda ([a, b], is(a # b)), rest(x), rest(x, -1)), ii0, ii],
ii0 : sublist_indices (dx, identity),
ii : append ([0], ii0, [length (x)]),
dii : rest(ii) - rest(ii, -1),
runs (dii, makelist (x[i], i, rest (ii))));
find_runs_inverse (r) :=
block ([v: r@values, n: r@lengths],
apply (append, makelist (makelist (v[i], n[i]), i, 1, length(v))));
|