1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
Maxima 5.9.3 http://maxima.sourceforge.net
Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) batch("new_cartan_test4.bat");
batching #p/home/furuya/sagyo/new_cartan_test4.bat
(%i2) load(cartan_new.lisp)
(%i3) infix(@)
(%i4) infix(&)
(%i5) infix(|)
(%i6) coords : read(Input new coordinate)
Input new coordinate
[a,b];
(%i7) dim : extdim : length(coords)
(%i8) basis : VR : extsub : extsubb : []
1 1
(%i9) for i thru dim do basis : endcons(concat(D, coords ), basis)
i
(%i10) for i thru dim do (extsub : cons(basis = - basis , extsub ),
1 + i i i i
extsubb : cons(basis = 0, extsub ), ci : concat(v, i), VR : endcons(ci, VR))
i i i
(%i11) basis
(%o11) [Da, Db]
(%i12) cliffordtype : read(please input metric type,for example [1,1,1],if E3)
please input metric type,for example [1,1,1],if E3
[1,1];
(%o12) [1, 1]
(%i13) translist : read(represent the standard coordinates with new one)
represent the standard coordinates with new one
[(2+cos(a))*cos(b),(2+cos(a))*sin(b),sin(a)];
(%o13) [(cos(a) + 2) cos(b), (cos(a) + 2) sin(b), sin(a)]
(%i14) norm_table : []
(%i15) scale_factor : []
(%i16) _l : []
(%i17) for i thru dim do (_l : map(lambda([x], diff(x, coords )), translist),
i
2
_l : map(lambda([x], x ), _l), _p : ratsimp(trigsimp(apply(+, _l))),
cliffordtype
i
norm_table : endcons(-------------, norm_table))
_p
(%i18) norm_table
1
(%o18) [1, ----------------------]
2
cos (a) + 4 cos(a) + 4
norm_table
i
(%i19) for i thru dim do extsubb2 : cons(basis = -----------, extsub )
i i basis i
i
2 1
(%i20) for i thru dim do (a_ : solve(x_ - -----------, [x_]),
norm_table
i
scale_factor : cons(rhs(a_ ), scale_factor))
2
(%i21) scale_factor : reverse(scale_factor)
(%i22) scale_factor
(%o22) [1, cos(a) + 2]
(%i23) nest2(_f, _x) := block([_a : [_x], i],
if listp(_f) then (_f : reverse(_f), for i thru length(_f)
do _a : map(_f , _a)) else _a : map(_f, _a), _a )
i 1
(%i24) nest3(_f, _x, _n) := block([_a, i], _a : [_x],
for i thru _n do _a : map(_f, _a), _a)
2
(%i25) aa_ : solve(x_ - apply(*, norm_table), [x_])
(%i26) volume : rhs(aa_ )
2
1
(%i27) volume : ------
volume
(%i28) matrix_element_mult : lambda([x, y], x @ y)
(%i29) load(hodge_test3.mac)
(%i30) load(f_star_test4.mac)
(%i31) load(helpfunc.mac)
(%i32) load(coeflist.lisp)
(%i33) load(format.lisp)
(%i34) load(diag)
(%i35) load(poisson.mac)
(%i36) load(frobenius.mac)
(%i37) load(curvture2.mac)
(%o38) new_cartan_test4.bat
/*[x,y,z]=translist,this case parametrized torous by [a,b] */
(%i38) d(translist);
(%o38) [- cos(a) sin(b) Db - 2 sin(b) Db - sin(a) cos(b) Da,
cos(a) cos(b) Db + 2 cos(b) Db - sin(a) sin(b) Da, cos(a) Da]
(%i39) m:coefmatrix(%,basis);
[ - sin(a) cos(b) (- cos(a) - 2) sin(b) ]
[ ]
(%o39) [ - sin(a) sin(b) (cos(a) + 2) cos(b) ]
[ ]
[ cos(a) 0 ]
(%i40) trigsimp(m.diag([1,1/(cos(a)+2)]));
[ - sin(a) cos(b) - sin(b) ]
[ ]
(%o40) [ - sin(a) sin(b) cos(b) ]
[ ]
[ cos(a) 0 ]
(%i41) trigsimp(add_tan(%));
[ - sin(a) cos(b) - sin(b) - cos(a) cos(b) ]
[ ]
(%o41) [ - sin(a) sin(b) cos(b) - cos(a) sin(b) ]
[ ]
[ cos(a) 0 - sin(a) ]
(%i42) transpose(%).d(%)$
(%i43) trigsimp(%);
/*this is in Flanders P41 but transposed */
[ 0 sin(a) Db - Da ]
[ ]
(%o43) [ - sin(a) Db 0 - cos(a) Db ]
[ ]
[ Da cos(a) Db 0 ]
(%i44) map("*",scale_factor,basis);
/*this is [sigma1,sigma2] in Flanders P41 but transposed */
(%o44) [Da, (cos(a) + 2) Db]
(%i45) basis;
(%o45) [Da, Db]
(%i46) scale_factor;
(%o46) [1, cos(a) + 2]
/*Gaussian curvature K is K*sigma1@aigma2=w1@w2
now w1=-Da,w2=-cos(a)*Db,and %o44 so K=cos(a)/(2+cos(a))
0<=a<2%pi,0<=b<2%pi,integrate K on this torous,
cos(a)/(2+cos(a)) *(2+cos(a))*Da@Db is equal cos(a)Da@Db
on 0<=a<2%pi,0<=b<2%pi ,apparently this is 0.
Theory says integrate K on total surface is 2*%pi*
is euler character,torous's character is 0 */
/* d()=-. ,this style is Darling,Flanderse style is transpose
transpose(d(omega))=d(transpose(omega))=-(transpose(omega).transpose(omega))
obviously AL:transpose(omega)=-omega,d(AL)=AL.AL */
(%i47) d(%o43)+%o43.%o43;
[ 0 0 0 ]
[ ]
(%o47) [ 0 0 0 ]
[ ]
[ 0 0 0 ]
|