File: desoln.usg

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (55 lines) | stat: -rw-r--r-- 1,547 bytes parent folder | download | duplicates (18)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
WRITTEN BY RAB.
DESOLN LISP CONTAINS A ROUTINE FOR SOLVING DIFFERENTIAL EQUATIONS
OR SYSTEMS OF THEM BY USING LAPLACE TRANSFORMS. THE CALL IS:

DESOLVE(EQ,VAR) OR DESOLVE([EQ1,...,EQN],[VAR1,...,VARN])

WHERE THE EQ'S ARE DIFFERENTIAL EQUATIONS IN THE DEPENDENT VARIABLES
VAR1,...,VARN.  THE FUNCTIONAL RELATIONSHIPS MUST BE EXPLICITLY
INDICATED IN BOTH THE EQUATIONS AND THE VARIABLES, FOR EXAMPLE

(C1) 'DIFF(F,X,2)=SIN(X)+'DIFF(G,X);
(C2) 'DIFF(F,X)+X^2-F=2*'DIFF(G,X,2);

IS NOT IN THE PROPER FORMAT.  THE CORRECT WAY IS:

(C3) 'DIFF(F(X),X,2)=SIN(X)+'DIFF(G(X),X);
(C4) 'DIFF(F(X),X)+X^2-F(X)=2*'DIFF(G(X),X,2);

THE QUOTES ARE NOT NECESSARY SINCE DIFF WILL RETURN THE NOUN FORMS ANYWAY.

THE CALL IS THEN DESOLVE([D3,D4],[F(X),G(X)]);

IF INITIAL CONDITIONS AT 0 ARE KNOWN, THEY SHOULD BE SUPPLIED BEFORE
CALLING DESOLVE BY USING ATVALUE.

		EXAMPLE

(C5) 'DIFF(F(X),X)='DIFF(G(X),X)+SIN(X);
			D         D
(D5)                    -- F(X) = -- G(X) + SIN(X)
			DX        DX

(C6) 'DIFF(G(X),X,2)='DIFF(F(X),X)-COS(X);
			 2
			D          D
(D6)                    --- G(X) = -- F(X) - COS(X)
			  2        DX
			DX

(C7) ATVALUE('DIFF(G(X),X),X=0,A);
(D7)                                A

(C8) ATVALUE(F(X),X=0,1);
(D8)                                1

(C9) DESOLVE([D5,D6],[F(X),G(X)]);

		   X                              X
(D9)   [F(X) = A %E  - A + 1, G(X) = COS(X) + A %E  - A + G(0) - 1]

/* VERIFICATION */
(C10) [D5,D6],D9,DIFF;
		  X       X      X                X
(D10)        [A %E  = A %E , A %E  - COS(X) = A %E  - COS(X)]