1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/* COPYRIGHT NOTICE
Copyright (C) 2010 Donald J Bindner
2015 Pankaj Sejwal
This program is free software; you can redistribute
it and/or modify it under the terms of the
GNU General Public License as published by
the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details at
http://www.gnu.org/copyleft/gpl.html
*/
/*
This is a set of user contributed plotting routines
based on package draw.
See documentation in drawutils.texi
*/
drawutils_version : 1 $
if draw_version = 'draw_version then load("draw") $
/*********************/
/* Vector fields */
/* by */
/* Donald J. Bindner */
/* 2010 */
/*********************/
plot_vector_field( F, X, Y, [args] ) := block(
[vars, G,P,Q, points, grid_d,u,scale, range,xrange,yrange, v],
scale : assoc('scale,args,1), args:delete( 'scale=scale, args ),
/* create function versions of each componont and of the field itself */
vars : [ X[1],Y[1] ],
P : G( vars, ev(F[1])), P : subst( lambda, G, P ),
Q : G( vars, ev(F[2])), Q : subst( lambda, G, Q ),
G : lambda( [z], [apply(P,z), apply(Q,z)] ),
/* create a list of points to base arrows at */
points : listify( cartesian_product(
setify( makelist( X[2] + (X[3]-X[2])*i/10, i, 0, 10 )),
setify( makelist( Y[2] + (Y[3]-Y[2])*i/10, i, 0, 10 )) )),
/* diagonal length of a grid square */
grid_d : sqrt((X[3]-X[2])^2 + (Y[3]-Y[2])^2)/10.0,
/* u is the divisor that shortens arrows to fit in grid squares */
u : max( apply( max, makelist( abs(P(k[1],k[2])), k, points )) / (X[3]-X[2]) * 10,
apply( max, makelist( abs(Q(k[1],k[2])), k, points )) / (Y[3]-Y[2]) * 10 ),
if scale#0 and u>grid_d/50.0 then u:scale/u else u:1,
/* xrange and yrange need to be large enough to contain head
* and tail of each arrow (or some won't appear in output) */
range : lambda( [z], [ apply(min,z), apply(max,z) ] ),
xrange : range( flatten(makelist( [k[1],k[1]+P(k[1],k[2])], k, points ))),
yrange : range( flatten(makelist( [k[2],k[2]+Q(k[1],k[2])], k, points ))),
/* generate the vectors to draw and set an appropriate arrow
* head length for each one */
v : flatten( makelist( [head_length=u*sqrt(G(k).G(k))/5+grid_d/100, vector(k, u*G(k) )], k, points )),
/* draw! */
draw2d(color=blue,line_width=1,head_type='nofilled,
head_angle=20,'xrange=xrange,'yrange=yrange,
xlabel=string(X[1]),ylabel=string(Y[1]), args, v ) )$
plot_vector_field3d( F, X, Y, Z, [args] ) := block(
[vars, G,P,Q,R, points, grid_d,u,scale, range,xrange,yrange,zrange, v],
scale : assoc('scale,args,1), args:delete( 'scale=scale, args ),
/* create function versions of each componont and of the field itself */
vars : [ X[1],Y[1],Z[1] ],
P : G( vars, ev(F[1])), P : subst( lambda, G, P ),
Q : G( vars, ev(F[2])), Q : subst( lambda, G, Q ),
R : G( vars, ev(F[3])), R : subst( lambda, G, R ),
G : lambda( [z], [apply(P,z), apply(Q,z), apply(R,z)] ),
/* create a list of points to base arrows at */
points : listify( cartesian_product(
setify( makelist( X[2] + (X[3]-X[2])*i/5, i, 0, 5 )),
setify( makelist( Y[2] + (Y[3]-Y[2])*i/5, i, 0, 5 )),
setify( makelist( Z[2] + (Z[3]-Z[2])*i/5, i, 0, 5 )) )),
/* the diagonal length of a grid square */
grid_d : sqrt((X[3]-X[2])^2 + (Y[3]-Y[2])^2 + (Z[3]-Z[2])^2)/5.0,
/* u is the divisor that shortens arrows to fit in grid squares */
u : max( apply( max, makelist( abs(P(k[1],k[2],k[3])), k, points )) / (X[3]-X[2]) * 5,
apply( max, makelist( abs(Q(k[1],k[2],k[3])), k, points )) / (Y[3]-Y[2]) * 5,
apply( max, makelist( abs(R(k[1],k[2],k[3])), k, points )) / (Z[3]-Z[2]) * 5 ),
if scale#0 and u>grid_d/50.0 then u:scale/u else u:1,
/* xrange,yrange,zrange need to be large enough to contain head
* and tail of each arrow (or some won't appear in output) */
range : lambda( [z], [ apply(min,z), apply(max,z) ] ),
xrange : range( flatten(makelist( [k[1],k[1]+P(k[1],k[2],k[3])], k, points ))),
yrange : range( flatten(makelist( [k[2],k[2]+Q(k[1],k[2],k[3])], k, points ))),
zrange : range( flatten(makelist( [k[3],k[3]+R(k[1],k[2],k[3])], k, points ))),
/* generate the vectors to draw and set an appropriate arrow
* head length for each one */
v : flatten(makelist( [head_length=u*sqrt(G(k).G(k))/10+grid_d/100, vector(k, u*G(k))], k, points )),
/* draw! */
draw3d(color=blue,line_width=1,head_type='nofilled,
head_angle=10,'xrange=xrange,'yrange=yrange,
'zrange=zrange,xlabel=string(X[1]),ylabel=string(Y[1]),zlabel=string(Z[1]), args, v ) )$
/*****************/
/* Venn diagrams */
/* by */
/* Pankaj Sejwal */
/* 2015 */
/*****************/
load(basic)$
fun(n):=/* To plot n-circles at equal distance from each other, find coordinates using roots of complex function of order n */
map(lambda([s],[realpart(s),imagpart(s)]),makelist(cos(2*k*%pi/n)+%i*sin(2*k*%pi/n),k,1,n))$
liss(n):=/* Create equations for circles using the coordinates obtained from fun()) */
block([pts:fun(n)],pts:map(lambda([w],(x-first(w))^2+(y-last(w))^2=n),pts))$
collectatoms(rel):=/* Collect all atoms from the relation provided to be plotted,
eg, (a and b or not(c))=>[a,b,c], calls findatoms() to get job done */
block([final:[]],findatoms(rel),flatten(reverse(final)))$
findatoms(rel):=block([temp,ntemp],ntemp:args(rel),/* Collects atoms in logical relation iteratively */
temp:sublist(ntemp,lambda([s],atom(s))),
if(temp#[]) then push(temp,final),
for item in temp do ntemp:delete(item,ntemp),
map(findatoms,ntemp))$
transform(eq,args,lis):=/* Substitutes the equations of circles into logical relation,
maxima automatically handles it as (x^2+y^2<const) in case of inclusion and not(x^2+y^2<const)
equal to (x^2+y^2>const) in case of exclusion */
block([temp],
eq:map(lambda([s],lhs(s)<rhs(s)),eq),
temp:map("=",lis,eq),
args:psubst(temp,args),args)$
randomcolor():=/*create a random color for each circle plotted */
block([temp:[],final:[]],for i:1 thru 6 do
(temp:[],for j:1 thru 4 do push(random(2),temp),push(temp,final)),
final:psubst([[0,0,0,0]=0,[0,0,0,1]=1,[0,0,1,0]=2,[0,0,1,1]=3,[0,1,0,0]=4,
[0,1,0,1]=5,[0,1,1,0]=6,[0,1,1,1]=7,[1,0,0,0]=8,[1,0,0,1]=9,
[1,0,1,0]=a,[1,0,1,1]=b,[1,1,0,0]=c,[1,1,0,1]=d,[1,1,1,0]=e,[1,1,1,1]=f],final),
final)$
vennplot(args):=/* Does plotting work for the logical relation and is the only function needed by user */
block([pts,reg,form,temp,wee,colr,i:1],
lis:collectatoms(args),
form:liss(length(lis)),
n:length(lis),
pts:(fun(n)),
temp:transform(form,args,lis),
wee:[title=string(args),proportional_axes=xy,
grid= true,line_type= solid,x_voxel = 50,y_voxel = 50],
reg:apply(lambda([s],region(s,x,-(n+1),n+1,y,-(n+1),n+1)),[transform(form,args,lis)]),
wee:endcons(reg,wee),
wee:endcons(grid=false,wee),
wee:endcons(font="Courier-Oblique",wee),
wee:endcons(font_size=15,wee),
wee:endcons(line_width=3,wee),
for item in form do
( colr:apply(concat,cons("#",randomcolor())),
wee:endcons(key=string(part(lis,i)),wee),
wee:endcons(color= (colr),wee),
wee:endcons(label([string(part(lis,i)),first(part(pts,i)),last(part(pts,i))-0.4]),wee),i:i+1,
wee:endcons(implicit(item,x,-(n+1),n+1,y,-(n+1),n+1),wee)),
apply(draw2d,wee))$
/* Usage examples:
vennplot(a and b and not(c))$
vennplot(not(d) and b);
*/
|