1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/* COPYRIGHT NOTICE
Copyright (C) 2008 Nicolas Guarin Zapata
This program is free software; you can redistribute
it and/or modify it under the terms of the
GNU General Public License as published by
the Free Software Foundation.
This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details at
http://www.gnu.org/copyleft/gpl.html
*/
/*
****************************************************
* FINANCE PACKAGE V.0.1 *
****************************************************
*This is the Finance Package. *
*Actually, there are only basic functions, we hope *
*you could improve the package with brand new lines*
****************************************************
*In all the functions rate is the compound interest*
*rate, num is the number of periods and must be *
*postivive & "flow" refers to cash flow so if you *
*have and Output the flow is negative & positive *
*for Inputs. *
****************************************************
*/
load(draw)$
/*
Returns the amortization table determinated by rate, Amount,
and number of periods.
*/
amortization(rate,Amount,num):=
block([result,A,payment,k,a],
if num<0 then error("num must be a positive value")
else A:genmatrix(a, num+2, 5),
payment:Amount*rate*((1+rate)^(num)/((1+rate)^num-1)),
A[1]:["n", "Balance", "Interest", "Amortization","Payment"],
A[2]:[0,0,0,0,0],
A[2,2]:Amount,
for k:3 thru num+2 step 1 do (
A[k,5]:payment,
A[k,1]:k-2,
A[k,3]:A[k-1,2]*rate,
A[k,4]:A[k,5]-A[k,3],
A[k,2]:A[k-1,2]-A[k,4]
),
printf(true," "),
printf(true,"~7s~14s~13s~16s~14s ~% ~{ ~{ ~12,3f ~} ~% ~}",
A[1,1],A[1,2],A[1,3],A[1,4],A[1,5],
args(submatrix(1,A)))
)$
/*
Returns the annuity knowing the desired value (future value),
it is a constant and periodic payment.
*/
annuity_fv(rate,FV,num):=FV*rate/((1+rate)^num-1)$
/*
Returns the annuity knowing the present value (like an amount),
it is a constant and periodic payment.
*/
annuity_pv(rate,PV,num):=PV*rate*((1+rate)^(num)/((1+rate)^num-1))$
/*
Returns the amortization table determinated by rate, Amount,
and number of periods. The payment is not constant, it presents
an arithmetic growing, increment is then the difference between two
consecutive rows in the "Payment" column.
*/
arit_amortization(rate,increment,Amount,num):=
block([result,A,payment,k,a],
if num<0 then error("num must be a positive value")
else A:genmatrix(a, num+2, 5),
payment:(rate^2*(rate+1)^num*Amount+(rate*num-(1+rate)^num+1)*increment)/(rate*(rate+1)^num-rate),
A[1]:["n", "Balance", "Interest", "Amortization","Payment"],
A[2]:[0,0,0,0,0],
A[2,2]:Amount,
A[3,5]:payment,
for k:4 thru num+2 step 1 do (A[k,5]:A[k-1,5]+increment),
for k:3 thru num+2 step 1 do (
A[k,1]:k-2,
A[k,3]:A[k-1,2]*rate,
A[k,4]:A[k,5]-A[k,3],
A[k,2]:A[k-1,2]-A[k,4]
),
printf(true," "),
printf(true,"~7s~14s~13s~16s~14s ~% ~{ ~{ ~12,3f ~} ~% ~}",
A[1,1],A[1,2],A[1,3],A[1,4],A[1,5],
args(submatrix(1,A)))
)$
/*
Calculate the ratio Benefit/Cost, Benefit is the Net Present Value (NPV)
of the inputs, and Cost is the Net Present Value (NPV) of the outputs.
*/
benefit_cost(rate,Input,Output):=
block([result,NVIn,NVOut],
NVIn:0,NVOut:0,
if length(Input)#length(Output)
then error("Input & Output must have the same length")
else
(NVIn:npv(rate,Input),
NVOut:npv(rate,Output)),
result:NVIn/NVOut
)$
/*
Calculate the distance between 2 dates, assuming 360 days years,
30 days months.
*/
days360(year1,month1,day1,year2,month2,day2):=block([years,months,days],
if month2>month1 then (years:year2-year1,
if day2>day1 then (months:month2-month1,days:day2-day1)
else (months:month2-month1-1,days:day2+30-day1)
)
else (years:year2-year1-1,
if day2>day1 then (months:month2+12-month1,days:day2-day1)
else (months:month2+11-month1, days:day2+30-day1)
), days:days+years*360+months*30
)$
/*
Returns the Future Value of a Present one, the diference in the
values is the Interest given by the interest rate.
*/
fv(rate,PV,num):=PV*(1+rate)^num$
/*
Plot the money flow in a time line, the positive values in blue
and upside; the negative ones in red and downside.
The direction of the flow is given by the sign of the value.
*/
graph_flow(flowValues):=
block([vectors, options],
vectors: flatten(makelist([color = if flowValues[k]<0 then 'red else
'blue,vector([k-1,0],[0,flowValues[k]])],
k,1,length(flowValues))),
options: [head_length=0.05,
xaxis=true,
yaxis=false,
xrange=[-1,length(flowValues)+1]],
apply(draw2d,append(options,vectors))
)$
/*
Returns the amortization table determinated by rate, Amount,
and number of periods. The payment is not constant, it presents
ah geometric growing, growinRate is then the cocient between two
consecutive rows in the "Payment" column.
*/
geo_amortization(rate,growing_rate,Amount,num):=
block([result,A,payment,k,a],
if num<0 then error("num must be a positive value")
else
A:genmatrix(a,num+2, 5),
payment:Amount*(rate-growing_rate)/(1-(1+growing_rate)^(num)/((1+rate)^num)),
A[1]:["n", "Balance", "Interest", "Amortization","Payment"],
A[2]:[0,0,0,0,0],
A[2,2]:Amount,
A[3,5]:payment,
for k:4 thru num+2 step 1 do (A[k,5]:A[k-1,5]*(1+growing_rate)),
for k:3 thru num+2 step 1 do (
A[k,1]:k-2,
A[k,3]:A[k-1,2]*rate,
A[k,4]:A[k,5]-A[k,3],
A[k,2]:A[k-1,2]-A[k,4]
),
printf(true," "),
printf(true,"~7s~14s~13s~16s~14s ~% ~{ ~{ ~12,3f ~} ~% ~}",
A[1,1],A[1,2],A[1,3],A[1,4],A[1,5],
args(submatrix(1,A)))
)$
/*
Returns the growing annuity knowing the desired value (future value),
it is a growing payment.
*/
geo_annuity_fv(rate,growing_rate,FV,num):=FV*(rate-growing_rate)/((1+rate)^num-(1+growing_rate)^(num))$
/*
Returns the growing annuity knowing the desired value (like an amount),
it is a growing payment.
*/
geo_annuity_pv(rate,growing_rate,PV,num):=PV*(rate-growing_rate)/(1-(1+growing_rate)^(num)/((1+rate)^num))$
/*
IRR (Internal Rate of Return), is the value of rate which makes Net Present Value
zero.
*/
irr(flowValues,I0):=
block([r,sum, realonly: true],
sum:npv(r,flowValues)-I0,
result:float(algsys([sum=0],[r])),
result
)$
/*
Calculate the present value of a value series to evaluate the viability in a
project.
*/
npv(rate,flowValues):=
block([sum,k],
sum:0,
for k:1 thru length(flowValues) step 1 do
(sum:sum+pv(rate,flowValues[k],k-1)),
sum
)$
/*
Returns the Present Value of a Future one, the diference in the
values is the Interest given by the interest rate.
*/
pv(rate,FV,num):=FV/(1+rate)^num$
/*
Returns a table that represent the values in a constant an periodic
saving. Amount represent the desired quantity and num the number
of periods to save.
*/
saving(rate,Amount,num):=
block([result,A,payment,k,a],
if num<0 then error("num must be a positive value")
else A:genmatrix(a,num+2, 4),
payment:Amount*rate/((1+rate)^num-1),
A[1]:["n", "Balance", "Interest","Payment"],
A[2]:[0,0,0,0],
A[2,2]:0,
for k:3 thru num+2 step 1 do(
A[k,4]:payment,
A[k,1]:k-2,
A[k,3]:A[k-1,2]*rate,
A[k,2]:A[k-1,2]+A[k,3]+A[k,4]
),
printf(true," "),
printf(true,"~7s~14s~13s~14s ~% ~{ ~{ ~12,3f ~} ~% ~}",
A[1,1],A[1,2],A[1,3],A[1,4],
args(submatrix(1,A)))
)$
|