File: connectivity.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (99 lines) | stat: -rw-r--r-- 4,109 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*  
  GRAPHS - graph theory package for Maxima
  Copyright (C) 2008 Andrej Vodopivec <andrej.vodopivec@gmail.com>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or	 
  (at your option) any later version. 

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA

*/


edge_connectivity_graph(g) := block(
  [edges : edges(g), vertices : vertices(g), dg, dedges],
  dedges : append(edges, map(reverse, edges)),
  dedges : map(lambda([u], [u, 1]), dedges),
  create_graph(vertices, dedges, directed=true))$

edge_connectivity(g) := block(
  [vertices, dg],
  if not is_graph(g) then error("Argument to `edge_connectivity' is not a graph."),
  if not is_connected(g) then return(0),
  vertices : vertices(g),
  if length(vertices)<2 then return('inf),
  dg : edge_connectivity_graph(g),
  lmin(makelist(first(max_flow(dg, first(vertices), u)), u, rest(vertices))))$

min_edge_cut(g) := block(
  [vertices, dg, v, mf : [inf, false], mf1, g1, edges:[], s, t, tr],
  if not is_graph(g) then error("Argument to `min_edge_cut' is not a graph."),
  if not is_connected(g) then return([]),
  vertices : vertices(g),
  v : first(vertices),
  s : v,
  dg : edge_connectivity_graph(g),
  for u in rest(vertices) do (
    mf1 : max_flow(dg, v, u),
    if mf1[1]<mf[1] then (
      mf:mf1,
      t : u)),
  for e in edges(g) do
    if assoc(e, mf[2])=0 and assoc(reverse(e), mf[2])=0 then edges : cons(e, edges),
  g1 : create_graph(vertices, edges),
  tr : reachable_vertices(t, g1),
  sublist(edges(g), lambda([e], is(member(e[1], tr) and not member(e[2], tr)) or
                                is(member(e[2], tr) and not member(e[1], tr)))))$

vertex_connectivity_graph(g) := block(
  [edges : edges(g), vertices : vertices(g), dg, dedges],
  dedges : append(
    makelist([2*e[1],2*e[2]+1], e, edges),
    makelist([2*e[2],2*e[1]+1], e, edges),
    makelist([2*v+1, 2*v], v, vertices)),
  dedges : map(lambda([u], [u, 1]), dedges),
  vertices : append(2*vertices, 2*vertices+1),
  create_graph(vertices, dedges, directed=true))$

vertex_connectivity(g) := block(
  [vertices, mvc : inf, flw, dg],
  if not is_graph(g) then error("Argument to `vertex_connectivity' is not a graph."),
  if not is_connected(g) then return(0),
  dg : vertex_connectivity_graph(g),
  vertices : vertices(g),
  for i:1 thru length(vertices)-1 while i<=mvc do (
    for j:i+1 thru length(vertices) while i<=mvc do (
      if not is_edge_in_graph([vertices[i], vertices[j]], g) then (
        flw : max_flow(dg, 2*vertices[i], 2*vertices[j]+1),
        if flw[1]<mvc then mvc : flw[1]))),
  mvc)$

min_vertex_cut(g) := block(
  [vertices, dg, v, mf : [inf, false], mf1: [inf, []], g1, edges:[], s, t, tr],
  if not is_graph(g) then error("Argument to `min_vertex_cut' is not a graph."),
  if not is_connected(g) then return([]),
  vertices : vertices(g),
  dg : vertex_connectivity_graph(g),
  for i:1 thru length(vertices)-1 while i<=mf1[1] do (
    for j:i+1 thru length(vertices) while i<=mf1[1] do (
      if not is_edge_in_graph([vertices[i], vertices[j]], g) then (
        mf1 : max_flow(dg, 2*vertices[i], 2*vertices[j]+1),
        if mf1[1]<mf[1] then (
          mf:mf1,
          t : vertices[i])))),
  for e in edges(dg) do
    if assoc(e, mf[2])=0 then edges : cons(e, edges)
    else edges : cons(reverse(e), edges),
  g1 : create_graph(append(2*vertices, 2*vertices+1), edges, directed=true),
  tr : reachable_vertices(2*t, g1),
  edges : sublist(edges(dg), lambda([e], is(member(e[1], tr) and not member(e[2], tr)))),
  map(lambda([u], floor(second(u)/2)), edges))$