1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
/*
GRAPHS - graph theory package for Maxima
Copyright (C) 2008 Andrej Vodopivec <andrej.vodopivec@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
edge_connectivity_graph(g) := block(
[edges : edges(g), vertices : vertices(g), dg, dedges],
dedges : append(edges, map(reverse, edges)),
dedges : map(lambda([u], [u, 1]), dedges),
create_graph(vertices, dedges, directed=true))$
edge_connectivity(g) := block(
[vertices, dg],
if not is_graph(g) then error("Argument to `edge_connectivity' is not a graph."),
if not is_connected(g) then return(0),
vertices : vertices(g),
if length(vertices)<2 then return('inf),
dg : edge_connectivity_graph(g),
lmin(makelist(first(max_flow(dg, first(vertices), u)), u, rest(vertices))))$
min_edge_cut(g) := block(
[vertices, dg, v, mf : [inf, false], mf1, g1, edges:[], s, t, tr],
if not is_graph(g) then error("Argument to `min_edge_cut' is not a graph."),
if not is_connected(g) then return([]),
vertices : vertices(g),
v : first(vertices),
s : v,
dg : edge_connectivity_graph(g),
for u in rest(vertices) do (
mf1 : max_flow(dg, v, u),
if mf1[1]<mf[1] then (
mf:mf1,
t : u)),
for e in edges(g) do
if assoc(e, mf[2])=0 and assoc(reverse(e), mf[2])=0 then edges : cons(e, edges),
g1 : create_graph(vertices, edges),
tr : reachable_vertices(t, g1),
sublist(edges(g), lambda([e], is(member(e[1], tr) and not member(e[2], tr)) or
is(member(e[2], tr) and not member(e[1], tr)))))$
vertex_connectivity_graph(g) := block(
[edges : edges(g), vertices : vertices(g), dg, dedges],
dedges : append(
makelist([2*e[1],2*e[2]+1], e, edges),
makelist([2*e[2],2*e[1]+1], e, edges),
makelist([2*v+1, 2*v], v, vertices)),
dedges : map(lambda([u], [u, 1]), dedges),
vertices : append(2*vertices, 2*vertices+1),
create_graph(vertices, dedges, directed=true))$
vertex_connectivity(g) := block(
[vertices, mvc : inf, flw, dg],
if not is_graph(g) then error("Argument to `vertex_connectivity' is not a graph."),
if not is_connected(g) then return(0),
dg : vertex_connectivity_graph(g),
vertices : vertices(g),
for i:1 thru length(vertices)-1 while i<=mvc do (
for j:i+1 thru length(vertices) while i<=mvc do (
if not is_edge_in_graph([vertices[i], vertices[j]], g) then (
flw : max_flow(dg, 2*vertices[i], 2*vertices[j]+1),
if flw[1]<mvc then mvc : flw[1]))),
mvc)$
min_vertex_cut(g) := block(
[vertices, dg, v, mf : [inf, false], mf1: [inf, []], g1, edges:[], s, t, tr],
if not is_graph(g) then error("Argument to `min_vertex_cut' is not a graph."),
if not is_connected(g) then return([]),
vertices : vertices(g),
dg : vertex_connectivity_graph(g),
for i:1 thru length(vertices)-1 while i<=mf1[1] do (
for j:i+1 thru length(vertices) while i<=mf1[1] do (
if not is_edge_in_graph([vertices[i], vertices[j]], g) then (
mf1 : max_flow(dg, 2*vertices[i], 2*vertices[j]+1),
if mf1[1]<mf[1] then (
mf:mf1,
t : vertices[i])))),
for e in edges(dg) do
if assoc(e, mf[2])=0 then edges : cons(e, edges)
else edges : cons(reverse(e), edges),
g1 : create_graph(append(2*vertices, 2*vertices+1), edges, directed=true),
tr : reachable_vertices(2*t, g1),
edges : sublist(edges(dg), lambda([e], is(member(e[1], tr) and not member(e[2], tr)))),
map(lambda([u], floor(second(u)/2)), edges))$
|