1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*
GRAPHS - graph theory package for Maxima
Copyright (C) 2007-2011 Andrej Vodopivec <andrej.vodopivec@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*********************
*
* Chromatic polynomial
*
*********************/
chromatic_polynomial(gr, x) :=
if graph_size(gr)=0 then x^graph_order(gr)
else block(
[comp],
comp : connected_components(gr),
if length(comp)>1 then (
comp : map(lambda([u], chromatic_polynomial(induced_subgraph(u, gr), x)), comp),
expand(apply("*", comp)))
else if graph_size(gr)=graph_order(gr)-1 then x*(x-1)^graph_size(gr)
else if graph_size(gr)=graph_order(gr)*(graph_order(gr)-1)/2 then c_poly_complete(graph_order(gr),x)
else if min_degree(gr)[1]=2 and max_degree(gr)[1]=2 then c_poly_cycle[graph_order(gr)](x)
else block(
[g1, g2, u, v, p1, p2, e],
u : max_degree(gr)[2],
v : first(neighbors(u, gr)),
e : [min(u,v), max(u,v)],
g1 : copy_graph(gr),
g2 : copy_graph(gr),
remove_edge(e, g1),
contract_edge(e, g2),
p1 : chromatic_polynomial(g1, x),
p2 : chromatic_polynomial(g2, x),
p1-p2))$
c_poly_cycle[1](x) := x$
c_poly_cycle[3](x) := x*(x-1)*(x-2)$
c_poly_cycle[n](x) := x*(x-1)^(n-1)-c_poly_cycle[n-1](x)$
c_poly_complete(n,x) := apply("*", makelist(x-i, i, 0, n-1))$
/*******************
*
* Matching polynomial
*
*******************/
matching_polynomial(gr, x) := (
if max_degree(gr)[1]<3 then
matching_polynomial_simple(gr, x)
else block(
[g1 : copy_graph(gr), g2 : copy_graph(gr), md, mv],
md : max_degree(g1),
mv : md[2],
md : md[1],
u : first(neighbors(mv, g1)),
remove_vertex(mv, g1),
remove_vertex(u, g1),
remove_edge([u, mv], g2),
matching_polynomial(g2, x) - matching_polynomial(g1, x)))$
matching_polynomial_simple(gr, x) := block(
[conn, pol : 1, c, deg, u],
conn : connected_components(gr),
for c in conn do (
deg : apply(min,
args(map(lambda([u], vertex_degree(u, gr)), c))),
if deg=2 then pol : pol * cycle_poly(length(c), x)
else pol : pol * path_poly[length(c)](x)),
expand(pol))$
cycle_poly(n, x) := path_poly[n](x) - path_poly[n-2](x)$
path_poly[1](x) := x$
path_poly[2](x) := x^2-1$
path_poly[n](x) := x*path_poly[n-1](x) - path_poly[n-2](x)$
/*******************
*
* Tutte polynomial
*
*******************/
tutte_polynomial(g, x, y) := block(
[non_bridge:false, tpzero:1, components: biconnected_components(g)],
/* Reduce to biconnected components */
if length(components)>1 then block(
[n_loops:0],
for v in vertices(g) do n_loops: n_loops+get_vertex_label(v, g, 0),
components: map(lambda([comp], induced_subgraph(comp, g)), components),
map(
lambda([gr],
for e in edges(gr) do
set_edge_weight(e, get_edge_weight(e, g), gr)),
components),
xreduce("*", map(lambda([gr], tutte_polynomial(gr, x, y)), components))*y^n_loops)
/* check for ``small'' graphs: */
/* - point with loops */
else if graph_order(g)=1 then
y^get_vertex_label(first(vertices(g)), g, 0)
/* - a multiedge with loops */
else if graph_order(g)=2 then block(
[e: first(edges(g))],
(x+xreduce("+", makelist(y^i, i, 1, get_edge_weight(e, g) - 1)))*
y^(get_vertex_label(e[1], g, 0) + get_vertex_label(e[2], g, 0)))
/* a cycle on n vertices */
else if first(max_degree(g))=2 and lmax(makelist(get_edge_weight(e, g), e, edges(g)))=1 then (
(y + xreduce("+", makelist(x^i, i, 1, graph_order(g)-1)))*
y^lsum(get_vertex_label(v, g, 0), v, vertices(g)))
/* The graph is biconnected - no edge is a bridge */
else (
/* choose the edge with one endpoint of minimum degree in the graph */
non_bridge: [second(min_degree(g))],
non_bridge: cons(first(neighbors(non_bridge[1], g)), non_bridge),
if non_bridge[1]>non_bridge[2] then non_bridge: reverse(non_bridge),
if non_bridge=false then block(
[tp:1],
tp: tp*x^graph_size(g),
for v in vertices(g) do
tp: tp*y^get_vertex_label(v, g, 0),
tp)
else block(
[g1: copy_graph(g), g2: copy_graph(g), mfactor:1, tp],
contract_edge(non_bridge, g2),
if get_edge_weight(non_bridge, g)=1 then (
remove_edge(non_bridge, g1))
else (
set_edge_weight(non_bridge, 1, g1),
mfactor: xreduce("+", makelist(y^i, i, 1, get_edge_weight(non_bridge, g)-1))),
for u in neighbors(non_bridge[2], g) do
if u#non_bridge[1] then
set_edge_weight([non_bridge[1], u],
get_edge_weight([non_bridge[1], u], g, 1, 0) +
get_edge_weight([non_bridge[2], u], g, 1, 0),
g2),
set_vertex_label(non_bridge[1],
get_vertex_label(non_bridge[1], g, 0) +
get_vertex_label(non_bridge[2], g, 0),
g2),
tp: tutte_polynomial(g1, x, y) + mfactor*tutte_polynomial(g2, x, y))))$
flow_polynomial(g, x) := block(
[n: graph_order(g), m: graph_size(g)],
(-1)^(m-n+1)*ratexpand(psubst(['y=0, 'x=x], tutte_polynomial(g,'y,1-'x))))$
rank_polynomial(g, x, y) := block(
[tp: tutte_polynomial(g, 'x, 'y), n:graph_order(g)],
ratexpand(x^(n-1)*psubst(['x=1+1/x, 'y=1+y], tp)))$
|