1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
;;; -*- Mode: Lisp; Package: Macsyma -*- ;;;
;;; (c) Copyright 1984 the Regents of the University of California. ;;;
;;; All Rights Reserved. ;;;
;;; This work was produced under the sponsorship of the ;;;
;;; U.S. Department of Energy. The Government retains ;;;
;;; certain rights therein. ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(macsyma-module seqopt)
(defmvar $sequence_optim_prefix '$opt
"String used to prefix all optimized temporaries arising from a
call to SEQUENCE_OPTIMIZE."
modified-commands '$sequence_optimize)
(defmvar $sequence_optim_counter 1
"Integer index used to uniquely identify all optimized temporaries
arising from a call to SEQUENCE_OPTIMIZE."
fixnum
modified-commands '$sequence_optimize)
(defmvar $sequence_optim_suffix 's
"String used to suffix all optimized temporaries arising from a
call to SEQUENCE_OPTIMIZE, as well as names generated by CRAY_FORTRAN for
subexpressions which have been broken out of an expression which is too
large for the CFT compiler."
modified-commands '($sequence_optimize $cray_fortran))
(defmvar $save_optim_info nil
"Flag which, if TRUE, causes the common subexpressions which
SEQUENCE_OPTIMIZE finds to be saved as equations on the MACSYMA list
OPTIM_EQUIVS."
boolean
modified-commands '$sequence_optimize)
(defmvar $optim_equivs (list '(mlist simp))
"Macsyma list of equations for the common subexpressions which
SEQUENCE_OPTIMIZE finds when SAVE_OPTIM_INFO is TRUE."
modified-commands '$sequence_optimize)
(defmvar $optim_additions (list '(mlist simp))
"Macsyma list of equations for the subexpressions which it is known
a priori will occur more than once in a sequence of code to be optimized."
modified-commands '$pre_optimize)
(defmvar $merge_ops (list '(mlist simp) '$cvmgp '$cvmgt)
"A MACSYMA list of currently known CRAY-1 vector merge operations."
modified-commands '($sequence_optimize $expense))
(defmvar $cost_float_power (+ $cost_exp $cost_sin_cos_log)
"The expense of computing a floating point power in terms of scalar
floating point additions on the CRAY-1(For further discussion do:
DESCRIBE(COST_RECIPROCAL) )."
fixnum
modified-commands '($expense $gather_exponents))
(defvar optim-vars nil
"MACSYMA list of generated names for common subexpressions(Not used if
a list equations is passed to SEQUENCE_OPTIMIZE).")
(array subexp t 64.)
(defmacro make-expt (base exponent) ``((mexpt simp) ,,base ,,exponent))
(defmacro base (x) `(cadr ,x))
(defmacro exponent (x) `(caddr ,x))
(defmacro mquotientp (x) `(and (not (atom ,x)) (eq (caar ,x) 'mquotient)))
;; $SEQUENCE_OPTIMIZE takes a Macsyma expression or list of simple equations
;; and returns a LIST which contains a series of equivalences for the common
;; subexpressions and the reduced equations or expression.
;; These subexpressions are found by hashing them.
(defun alike1-hash (exp)
(\ (if (atom exp)
(sxhash exp)
(do ((n (alike1-hash (caar exp))
(+ n (alike1-hash (car arg_list))))
(arg_list (cdr exp) (cdr arg_list)))
((null arg_list) n)))
27449.)) ; a prime number < 2^15 = PRIME(3000)
(defun $sequence_optimize (x)
(prog (setqs)
(fillarray 'subexp (list nil))
(if ($listp x)
(do ((chk (cdr x) (cdr chk)))
((null chk))
(or (and (not (atom (car chk)))
(eq (caaar chk) 'mequal)
($mapatom (cadar chk)))
(merror "List passed to SEQUENCE_OPTIMIZE of incorrect form. Bad element is ~%~M" (car chk))))
(setq optim-vars (append (list '(mlist)) nil)))
(setq x (collapse (fix-unary-minus (optim-format ($gather_exponents (copy-tree x))))))
(if (atom x) (return x))
(comexp x)
(setq x (optim x))
(and $save_optim_info
(setq $optim_equivs (append $optim_equivs (copy-tree setqs))))
(return (prog1 (cond ((null setqs) x)
(($listp x)
(let ((scan x))
(do ((opt-con setqs (cdr opt-con)))
((null opt-con) x)
(let ((rhs-eqn (caddar opt-con)))
(do ((equivs scan (cdr equivs)))
((null (cdr equivs))
(rplacd scan (append (ncons (car opt-con)) (cdr scan)))
(setq scan (cdr scan)))
(or (freeof (cadadr equivs) rhs-eqn)
(setq scan (cdr equivs))))))))
((or (not (eq 'mprog (caar x)))
(and ($listp (cadr x)) (cdadr x)))
`((mprog) ,optim-vars ,.setqs ,x))
(t `((mprog) ,optim-vars ,.(nconc setqs (cddr x)))))
(setq optim-vars nil)
(fillarray 'subexp (list nil))))))
(defun copy-to-pntr (x y)
(do ((redo x (cdr redo))
(new nil `(,.new ,(car redo))))
((eq redo y) new)))
(defun recip-1 (expon)
(or (and (numberp expon) (minusp expon))
(and (not (atom expon))
(let ((op (caar expon)))
(or (and (eq op 'mtimes) (equal (cadr expon) -1))
(and (eq op 'rat) (minusp (cadr expon)))
(eq op 'mminus))))))
(defun reciprocalp (x)
(and (mexptp x)
(let ((expon (exponent x)))
(cond ((mquotientp expon) (recip-1 (cadr expon)))
(t (recip-1 expon))))))
(defun gen-negative (x)
(cond ((mmminusp x) (cadr x))
((mquotientp x) `((mquotient) ,(mul -1 (cadr x)) ,(caddr x)))
(t (mul -1 x))))
(defun mul-list (x)
(cond ((cdr x) `((mtimes) ,@x))
(t (car x))))
(defun optim-format (x)
(cond ((atom x) x)
((and (eq 'rat (caar x)) (minusp (cadr x)))
`((mminus) ((rat) ,(- (cadr x)) ,(caddr x))))
((and (eq 'mquotient (caar x)) (not (equal 1 (cadr x))))
(let ((nmr (cadr x)))
(optim-format `((mtimes simp) ,@(cond ((mtimesp nmr) (cdr nmr))
(t (list nmr)))
((mquotient) 1 ,(caddr x))))))
((eq 'mexpt (caar x)) (opt-expt x))
((eq 'mtimes (caar x))
(do ((next (cdr x) (cdr next))
(denominator)
(numerator))
((null next)
(cond (denominator
(let ((recip `((mquotient) 1 ,(mul-list denominator))))
(cond (numerator
(let ((prod? (mul-list numerator)))
(cond ((mtimesp prod?)
(nconc prod? (ncons recip)))
(t `((mtimes) ,prod? ,recip)))))
(t recip))))
(numerator (mul-list numerator))
(t x)))
(let ((obj (car next)))
(cond ((reciprocalp obj)
(let* ((expon (exponent obj))
(optim-expt (let ((mbase (base obj)))
(cond ((equal expon -1)
(optim-format mbase))
(t
(opt-expt (make-expt mbase (gen-negative expon))))))))
(setq denominator
(nconc denominator
(cond ((mtimesp optim-expt) (cdr optim-expt))
(t (ncons optim-expt)))))
(or numerator
(do ((seplist (cdr x) (cdr seplist)))
((eq seplist next))
(let ((element (car seplist)))
(or (reciprocalp element)
(setq numerator `(,.numerator ,element))))))))
(t
(let ((result (optim-format obj)))
(or (eq obj result)
numerator
(do ((seplist (cdr x) (cdr seplist)))
((eq seplist next))
(let ((element (car seplist)))
(or (reciprocalp element)
(setq numerator `(,.numerator ,element))))))
(and (or numerator denominator (not (eq obj result)))
(setq numerator (nconc numerator
(cond ((and (mexptp obj) (mtimesp result))
(copy-tree (cdr result)))
(t (ncons result))))))))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (optim-format obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defun opt-expt (x)
(let ((osym-base (base x)) (oexp (exponent x)))
(let ((sym-base (optim-format osym-base)) (exp (optim-format oexp)))
(cond ((reciprocalp x)
`((mquotient) 1 ,(cond ((equal -1 exp) sym-base)
(t (opt-expt (make-expt sym-base (gen-negative exp)))))))
((and (ratnump exp) (equal 2 (caddr exp)))
(setq exp (cadr exp))
(cond ((equal 1 exp) `((%sqrt) ,sym-base))
(t (let ((int-exp (quotient exp 2)))
`((mtimes) ((%sqrt) ,sym-base)
,(cond ((equal int-exp 1) sym-base)
(t (make-expt sym-base int-exp))))))))
(t
(cond ((and (eq osym-base sym-base) (eq oexp exp)) x)
(t (make-expt sym-base exp))))))))
;; the following two functions were motivated by an inability of the
;; cray merge functions to cope with a unary minus.
(defun disp-negate (x)
(cond ((mtimesp x)
(let ((coeff (cadr x)))
(cond ((and (fixnump coeff) (minusp coeff))
(append `((mtimes) ,(- coeff)) (cddr x)))
(t `((mminus) ,x)))))
((mnump x) (mul -1 x))
((or (atom x) (not (eq (caar x) 'mminus))) `((mminus) ,x))
(t (cadr x))))
(defun fix-unary-minus (x)
(cond (($mapatom x) x)
((eq (caar x) 'mtimes)
(mapc 'fix-unary-minus (cdr x))
(let ((sign (cadr x)))
(cond ((and (fixnump sign) (minusp sign))
(cond ((equal sign -1)
(let ((chk-merge (caddr x)))
(cond ((and (not (atom chk-merge))
(member (caar chk-merge) $merge_ops :test #'eq))
(rplacd (cdr x) (append `(((,(caar chk-merge)) ,(disp-negate (cadr chk-merge))
,(disp-negate (caddr chk-merge))
,(cadddr chk-merge)))
(cdddr x)))
(cond ((cdddr x) (rplacd x (cddr x)) x)
(t (caddr x))))
(t `((mminus) ,(cond ((cdddr x)
(rplacd x (cddr x)) x)
(t (caddr x))))))))
(t `((mminus) ,(append `((mtimes) ,(- sign)) (cddr x))))))
(t x))))
(t (do ((search (cdr x) (cdr search)))
((null search) x)
(let* ((obj (car search)) (new (fix-unary-minus obj)))
(or (eq new obj) (rplaca search new)))))))
(defun collapse (x)
(if (atom x)
x
(let ((n (logand 63. (alike1-hash x))))
(do ((l (cdr x) (cdr l)))
((null l))
(let* ((carl (car l)) (res (collapse carl)))
(or (eq carl res) (rplaca l res))))
(do ((l (subexp n) (cdr l)))
((null l) (setf (subexp n) (cons (list x) (subexp n))) x)
(if (alike1 x (caar l)) (return (caar l)))))))
(defun comexp (x)
(cond ((atom x))
((eq 'rat (caar x)))
(t
(setq x (assoc x (subexp (logand 63. (alike1-hash x))) :test #'eq))
(cond ((null (cdr x))
(rplacd x 1)
(mapc 'comexp (cdar x)))
(t (rplacd x (1+ (cdr x))))))))
(defun optim (x)
(cond ((atom x) x)
((and (member 'array (cdar x) :test #'eq) (not (mget (caar x) 'arrayfun-mode))) x)
((eq 'rat (caar x)) x)
(t
(let ((xpair (assoc x (subexp (logand 63. (alike1-hash x))) :test #'eq))
(nx (do ((l (cdr x) (cdr l))
(c (list (car x)) (cons (optim (car l)) c)))
((null l) (nreverse c)))))
(let ((tmp (cdr xpair))
(sym (do ((lk (cdr $optim_equivs) (cdr lk)))
((null lk))
(and (alike1 nx (caddar lk))
(return (cadar lk))))))
(cond ((fixnump tmp)
(cond (sym
(rplacd xpair sym)
(mformat nil "c - earlier opt-vect, ~M, occurs ~M time(s)" sym tmp)
sym)
((= tmp 1) nx)
(t
(let ((sym (getvar)))
(rplacd xpair sym)
(setq setqs `(,.setqs ,(list (cond (optim-vars (list 'msetq))
(t (list 'mequal)))
sym nx)))
(mformat nil "c - there are ~M occurrences of ~M" tmp sym)
sym))))
(t tmp))))))) ;;; Should this be an error?
(defun getvar ()
(let ((newvar (implode (nconc (exploden $sequence_optim_prefix)
(exploden $sequence_optim_counter)
(exploden $sequence_optim_suffix)))))
(incf $sequence_optim_counter)
(if optim-vars (setq optim-vars `(,.optim-vars ,newvar)))
newvar))
;;; The following will not PRE_OPTIMIZE top-level forms.
(defun $pre_optimize (x)
(cond ((atom x))
((eq (caar x) '$cvmgp)
(let ((term3 (cadddr x))
(opt-list (append $optim_equivs (cdr $optim_additions))))
(or ($mapatom term3)
(and (eq (caar term3) 'mtimes)
(equal (cadr term3) -1)
(let ((obj (caddr term3))
(two-term (= (length term3) 3)))
(or (and two-term ($mapatom obj))
(do ((l (cdr opt-list) (cdr l)))
((null l))
(let ((rhs (caddar l)))
(cond ((and two-term (alike1 rhs obj))
(rplaca (cdddr x) (mul -1 (cadar l)))
(return t))
((alike1 rhs term3)
(rplaca (cdddr x) (cadar l))
(return t))))))))
(do ((l (cdr opt-list) (cdr l)))
((null l))
(let ((rhs (caddar l)))
(cond ((alike1 rhs term3)
(rplaca (cdddr x) (cadar l))
(return t))
((and (eq (caar rhs) 'mtimes)
(equal (cadr rhs) -1)
(null (cdddr rhs))
(alike1 (caddr rhs) term3))
(rplaca (cdddr x) (mul (cadar l) -1))
(return t)))))
(let ((name (getvar)))
(setq $optim_additions
`(,@$optim_additions ((mequal simp) ,name ,term3)))
(rplaca (cdddr x) name)))))
(t (do ((terms (cdr x) (cdr terms)))
((null terms))
(let ((obj (car terms)))
($pre_optimize obj)
(do ((lk (cdr $optim_equivs) (cdr lk)))
((null lk))
(and (alike1 obj (caddar lk))
(rplaca terms (cadar lk))
(return t))))))))
(defun $collapse_pre_optims (x)
(cond ((atom x) x)
((do ((lk (cdr $optim_equivs) (cdr lk)))
((null lk))
(and (alike1 x (caddar lk))
(return (cadar lk)))))
(t (do ((terms (cdr x) (cdr terms))
(success))
((null terms)
(cond ((or success (not (eq (caar x) 'mtimes))) x)
(t (do ((l (cdr x) (cdr l))
(follow x l))
((null l) x)
(let ((saved (car l)))
(cond ((atom saved))
((eq (caar saved) '$cvmgp)
(rplacd follow (cdr l))
(let* ((pminus (equal (cadr x) -1))
(new (do ((lk (cdr $optim_equivs) (cdr lk)))
((null lk) x)
(let ((rhs (caddar lk)))
(cond ((alike1 x rhs)
(return (cadar lk)))
(t (and (eq (caar rhs) 'mtimes)
(cond (pminus
(alike1 (cddr x) (cdr rhs)))
((equal (cadr rhs) -1)
(alike1 (cdr x) (cddr rhs))))
(return (mul -1 (cadar lk))))))))))
(return (cond ((eq new x)
(rplacd follow `(,saved ,@(cdr follow)))
x)
(t (mul new saved))))))))))))
(let* ((obj (car terms)) (new-obj ($collapse_pre_optims obj)))
(or (eq obj new-obj)
(and (setq success t)
(rplaca terms new-obj))))))))
(defun product-base (x y)
(muln (append (cond ((mtimesp x) (cdr x))
(t (ncons x)))
(cond ((mtimesp y) (cdr y))
(t (ncons y))))
nil))
(defun floating-exponent-gather (x)
(cond ((atom x) x)
((mtimesp x)
(do ((next (cdr x) (cdr next))
(xfol (cdr x) (cdr xfol))
(modified)
(new))
((null next)
(cond ((null new) x)
(t (muln new nil))))
(let* ((obj (car next)) (result obj))
(and (mexptp result)
(let ((expon (exponent result)))
(and (not (fixnump expon))
(do ((remain (cdr next) (cdr remain)))
((null remain))
(let ((powered? (car remain)))
(and (mexptp powered?)
(let ((expon-2 (exponent powered?)))
(and (not (fixnump expon-2))
(let ((intdif (sub expon expon-2)))
(and (fixnump intdif)
(let ((pf (> intdif 0))
(ab intdif))
(declare (fixnum ab))
(cond ((or (zerop ab)
(> (+ $cost_float_power
$cost_float_power
(cond (pf ($expense expon-2))
(t ($expense expon))))
(+ (cond (pf
(let ((mbase (base result)))
(cond ((mtimesp mbase) ($expense mbase))
(t 0))))
(t
(let ((mbase (base powered?)))
(cond ((mtimesp mbase) ($expense mbase))
(t 0)))))
(multiplies-in-nth-power (abs ab)))))
(cond ((not modified)
(setq modified t
next (append next nil))
(setq remain (member powered? next :test #'eq))
(setq powered? (car remain))))
(cond (pf
(let ((mbase (base result)))
(setq result
(cond ((equal ab 1) mbase)
(t (make-expt mbase ab))))
(rplaca remain (make-expt (product-base mbase (base powered?)) (exponent powered?))))
(return t))
(t
(setq result (make-expt (product-base (base result) (base powered?)) (exponent result)))
(cond ((zerop ab)
(setq next (delete powered? next :test #'eq)))
(t
(let ((pabs (- ab))
(mbase (base powered?)))
(cond ((equal pabs 1)
(cond ((mtimesp mbase)
(setq next (nconc next (cdr mbase)))
(setq remain (member powered? next :test #'eq))
(setq next (delete powered? next :test #'eq)))
(t (rplaca remain mbase))))
(t (rplaca remain (make-expt mbase pabs))))))))))))))))))))))
(setq result (floating-exponent-gather result))
(or (eq obj result)
new
(setq new (copy-to-pntr (cdr x) xfol)))
(and (or new (not (eq obj result)))
(setq new (nconc new
(cond ((mtimesp result)
(copy-tree (cdr result)))
(t (ncons result)))))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (floating-exponent-gather obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defmacro div-q (x y) `(div (simplify ,x) (simplify ,y)))
(defun fgcd-exponent-gather (x)
(cond ((atom x) x)
((mtimesp x)
(do ((next (cdr x) (cdr next))
(xfol (cdr x) (cdr xfol))
(modified)
(new))
((null next)
(cond ((null new) x)
(t (muln new nil))))
(let* ((obj (car next))
(result (fgcd-exponent-gather obj)))
(and (mexptp result)
(let ((expon (exponent result)))
(and (not (fixnump expon))
(do ((allow-fix t nil)
(repeat t))
((null repeat))
(do ((remain (cdr next) (cdr remain))
(current-gcd expon)
(pntrs))
((null remain)
(or allow-fix (setq repeat nil))
(and pntrs
(if (fixnump current-gcd)
(<= (multiplies-in-nth-power current-gcd)
(1+ (length pntrs)))
t)
(let* ((leadiv (gen-quotients (div-q expon current-gcd)))
(a-single (equal leadiv 1))
(ints (and (not a-single) (fixnump leadiv))))
(do ((scan pntrs (cdr scan))
(save (cond (ints
(- $cost_float_power
(multiplies-in-nth-power leadiv)))
(t 0)))
(interms (cond (ints (ncons (make-expt (base result) leadiv)))
(t ())))
(others (cond (ints ())
(t
(let ((mbase (base result)))
(cond (a-single
(cond ((mtimesp mbase) (cdr mbase))
(t (ncons mbase))))
(t (ncons (make-expt mbase leadiv)))))))))
((null scan)
(cond (interms
(let* ((prod-ints (muln interms nil))
(try-ints-gather (integer-gathering prod-ints))
(savings (- (+ (1+ (length pntrs))
(- ($expense prod-ints)
($expense try-ints-gather))
save)
$cost_float_power)))
(declare (fixnum savings))
(if (< savings 0) (return nil))
(setq result (make-expt (muln (nconc others
(cond ((mtimesp try-ints-gather)
(cdr try-ints-gather))
(t (ncons try-ints-gather))))
nil)
current-gcd))))
(t
(if (not a-single) (return (setq repeat nil)))
(setq result (make-expt (muln others nil) current-gcd))))
(do ((rescan pntrs (cdr rescan)))
((null rescan) (setq repeat nil))
(setq next (delete (car rescan) next :test #'eq))))
(declare (fixnum save))
(let* ((expt (car scan))
(expon-2 (exponent expt))
(nxdiv (gen-quotients (div-q expon-2 current-gcd))))
(cond ((equal nxdiv 1)
(setq a-single t
save (+ save $cost_float_power)
others (nconc others (let ((mbase (base expt)))
(cond ((mtimesp mbase) (cdr mbase))
(t (ncons mbase)))))))
((fixnump nxdiv)
(setq save (+ save (- $cost_float_power
(multiplies-in-nth-power nxdiv)))
interms `(,.interms ,(make-expt (base expt) nxdiv))))
(t
(setq others `(,.others ,(make-expt (base expt) nxdiv))))))))))
(let ((powered? (car remain)))
(and (mexptp powered?)
(let ((expon-2 (exponent powered?)))
(and (not (fixnump expon-2))
(let ((fgcd (gen-quotients ($gcd current-gcd expon-2))))
(cond ((equal fgcd 1))
((or pntrs
(alike1 fgcd expon)
(alike1 fgcd expon-2)
(and allow-fix
(or (fixnump (div-q expon fgcd))
(fixnump (div-q expon-2 fgcd)))))
(cond ((not modified)
(setq modified t
next (append next nil))
(setq remain (member powered? next :test #'eq))
(setq powered? (car remain))))
(setq current-gcd fgcd
pntrs `(,.pntrs ,powered?))))))))))))))
(or (eq obj result)
new
(setq new (copy-to-pntr (cdr x) xfol)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (fgcd-exponent-gather obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defun integer-exponent-gather (x)
(cond ((atom x) x)
((mtimesp x)
(do ((top x (or new top))
(new 0 new))
((null new) top)
(setq new nil)
(do ((next (cdr top) (cdr next))
(xfol (cdr top) (cdr xfol))
(modified))
((null next)
(and new (setq new (muln new nil))))
(let* ((obj (car next)) (result obj))
(and (mexptp result)
(let ((expon (exponent result)))
(and (fixnump expon)
(do ((remain (cdr next) (cdr remain)))
((null remain))
(let ((powered? (car remain)))
(and (mexptp powered?)
(let ((expon-2 (exponent powered?)))
(and (fixnump expon-2)
(let* ((intdif (- expon expon-2))
(pf (plusp intdif)))
(declare (fixnum intdif))
(cond ((or (zerop intdif)
(< (+ (cond (pf
(let ((mbase (base result)))
(cond ((mtimesp mbase) ($expense mbase))
(t 0))))
(t
(let ((mbase (base powered?)))
(cond ((mtimesp mbase) ($expense mbase))
(t 0)))))
1
(multiplies-in-nth-power (abs intdif)))
(multiplies-in-nth-power (max expon expon-2))))
(cond ((not modified)
(setq modified t
next (append next nil))
(setq remain (member powered? next :test #'eq))
(setq powered? (car remain))))
(cond (pf
(let ((mbase (base result)))
(setq result
(cond ((equal intdif 1) mbase)
(t (make-expt mbase intdif))))
(rplaca remain (make-expt (product-base mbase (base powered?)) (exponent powered?))))
(return t))
(t
(setq result (make-expt (product-base (base result) (base powered?)) (exponent result)))
(cond ((zerop intdif)
(setq next (delete powered? next :test #'eq)))
(t
(let ((pabs (- intdif))
(mbase (base powered?)))
(cond ((equal pabs 1)
(cond ((mtimesp mbase)
(setq next (nconc next (cdr mbase)))
(setq remain (member powered? next :test #'eq))
(setq next (delete powered? next :test #'eq)))
(t (rplaca remain mbase))))
(t (rplaca remain (make-expt mbase pabs))))))))))))))))))))
(setq result (integer-exponent-gather result))
(or (eq obj result)
new
(setq new (copy-to-pntr (cdr top) xfol)))
(and (or new (not (eq obj result)))
(setq new (nconc new
(cond ((mtimesp result)
(copy-tree (cdr result)))
(t (ncons result))))))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (integer-exponent-gather obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defun igcd-exponent-gather (x)
(cond ((atom x) x)
((mtimesp x)
(do ((next (cdr x) (cdr next))
(xfol (cdr x) (cdr xfol))
(modified)
(new))
((null next)
(cond ((null new) x)
(t (muln new nil))))
(let* ((obj (car next))
(result (igcd-exponent-gather obj)))
(and (mexptp result)
(let ((expon (exponent result)))
(and (fixnump expon)
(do ((remain (cdr next) (cdr remain))
(current-gcd expon)
(pntrs))
((null remain)
(and pntrs
(do ((scan pntrs (cdr scan))
(newbase (let ((mbase (base result)))
(cond ((equal expon current-gcd)
(cond ((mtimesp mbase) (cdr mbase))
(t (ncons mbase))))
(t (ncons (make-expt mbase (quotient expon current-gcd))))))))
((null scan)
(setq result (make-expt (muln newbase nil) current-gcd)))
(let* ((expt (car scan))
(expon-2 (exponent expt)))
(setq newbase (nconc newbase (let ((mbase (base expt)))
(cond ((equal expon-2 current-gcd)
(cond ((mtimesp mbase) (cdr mbase))
(t (ncons mbase))))
(t (ncons (make-expt mbase (quotient expon-2 current-gcd)))))))
next (delete expt next :test #'eq))))))
(declare (fixnum current-gcd))
(let ((powered? (car remain)))
(and (mexptp powered?)
(let ((expon-2 (exponent powered?)))
(and (fixnump expon-2)
(let ((intgcd (gcd current-gcd expon-2)))
(cond ((not (equal intgcd 1))
(cond ((not modified)
(setq modified t
next (append next nil))
(setq remain (member powered? next :test#'eq))
(setq powered? (car remain))))
(setq current-gcd intgcd
pntrs `(,.pntrs ,powered?)))))))))))))
(or (eq obj result)
new
(setq new (copy-to-pntr (cdr x) xfol)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (igcd-exponent-gather obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defun gen-quotients (x)
(cond (($mapatom x) x)
((specrepp x) (gen-quotients (specdisrep x)))
((eq 'mtimes (caar x))
(do ((next (cdr x) (cdr next))
(denominator)
(numerator))
((null next)
(cond (denominator
(let ((den (mul-list denominator)))
(cond (numerator
`((mquotient) ,(mul-list numerator) ,den))
(t `((mquotient) 1 ,den)))))
(numerator (mul-list numerator))
(t x)))
(let ((obj (car next)))
(cond ((reciprocalp obj)
(let ((expon (gen-quotients (exponent obj)))
(mbase (gen-quotients (base obj))))
(setq denominator
(nconc denominator
(cond ((equal expon -1)
(cond ((mtimesp mbase) (cdr mbase))
(t (ncons mbase))))
(t (ncons (make-expt mbase (gen-negative expon)))))))
(or numerator
(do ((seplist (cdr x) (cdr seplist)))
((eq seplist next))
(let ((element (car seplist)))
(or (reciprocalp element)
(setq numerator `(,.numerator ,element))))))))
(t
(let ((result (gen-quotients obj)))
(or (eq obj result)
numerator
(do ((seplist (cdr x) (cdr seplist)))
((eq seplist next))
(let ((element (car seplist)))
(or (reciprocalp element)
(setq numerator `(,.numerator ,element))))))
(and (or numerator denominator (not (eq obj result)))
(setq numerator `(,.numerator ,result)))))))))
((reciprocalp x)
`((mquotient) 1 ,(gen-quotients (let ((exp (exponent x))
(mbase (base x)))
(cond ((equal -1 exp) mbase)
(t (make-expt mbase (gen-negative exp))))))))
(t
(do ((next (cdr x) (cdr next))
(new))
((null next)
(cond (new new)
(t x)))
(let* ((obj (car next))
(result (gen-quotients obj)))
(or (eq obj result)
new
(setq new (copy-to-pntr x next)))
(and (or new (not (eq obj result)))
(setq new `(,.new ,result))))))))
(defun integer-gathering (x)
(do ((new x (igcd-exponent-gather (integer-exponent-gather new)))
(onew 0 new))
((eq new onew) new)))
(defun $gather_exponents (x)
(do ((new (gen-quotients x)
(fgcd-exponent-gather (floating-exponent-gather new)))
(onew 0 new))
((eq new onew) (integer-gathering new))))
|