File: fft-interface.lisp

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (233 lines) | stat: -rw-r--r-- 8,768 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
;; -*- Lisp -*-

;; Maxima interface to the FFT routines and some various related
;; utilities.

(in-package :maxima)

;; These functions perhaps need revision if they are
;; needed at all. Output ignores the type of input.
(defun $recttopolar (rary iary)
  (let ((fast-rary (maxima-fft:fft-arg-check '$recttopolar rary))
	(fast-iary (maxima-fft:fft-arg-check '$recttopolar iary)))
    (maxima-fft:complex-to-polar fast-rary fast-iary)
    (list '(mlist) rary iary)))

(defun $polartorect (rary iary)
  (let ((fast-rary (maxima-fft:fft-arg-check '$polartorect rary))
	(fast-iary (maxima-fft:fft-arg-check '$polartorect iary)))
    (maxima-fft:polar-to-complex fast-rary fast-iary)
    (list '(mlist) rary iary)))

;; Maxima's forward FFT routine.
(defun $fft (input)
  (multiple-value-bind (z from-lisp)
      (maxima-fft:find-complex-fft-converters input)
    (let* ((size (length z))
	   (order (maxima-fft:log-base2 size)))
      (unless (= size (ash 1 order))
	(merror "fft: size of input must be a power of 2, not ~M" size))
      (when (> (length z) 1)
	(setf z (maxima-fft:fft-r2-nn z)))
      (funcall from-lisp z))))

;; Maxima's inverse FFT routine.
(defun $inverse_fft (input)
  (multiple-value-bind (z from-lisp)
      (maxima-fft:find-complex-fft-converters input "inverse_fft")
    (let* ((size (length z))
	   (order (maxima-fft:log-base2 size)))
      (unless (= size (ash 1 order))
	(merror "inverse_fft: size of input must be a power of 2, not ~M" size))
      (when (> (length z) 1)
	(setf z (maxima-fft:fft-r2-nn z :inverse-fft-p t)))
      (funcall from-lisp z))))

;;; Maxima's RFFT function.
;;;
;;; The input is assumed to consist of objects that can be converted
;;; to a real-valued float.  If the input has length N, then the
;;; output is a complex reuslt of length N/2 + 1 because of the
;;; symmetry of the FFT for real inputs.
(defun $real_fft (input)
  (multiple-value-bind (z from-lisp input-length)
      (maxima-fft:find-rfft-converters input)
    (declare (type (simple-array (complex double-float) (*)) z))
    (unless (= input-length (ash 1 (maxima-fft:log-base2 input-length)))
      (merror "real_fft: size of input must be a power of 2, not ~M" input-length))
    (let* ((n (ash (length z) 1))
	   (result (make-array (1+ (length z)) :element-type '(complex double-float))))
      ;; This declaration causes CCL to generate incorrect code for at
      ;; least version 1.11 DarwinX8664 on OSX 10.11.3.  Disable it.
      #-ccl
      (declare (type (simple-array (complex double-float) (*)) result))

      ;; We don't handle input of length 4 or less.  Use the complex
      ;; FFT routine to produce the desired (correct) output.
      (when (< n 3)
	(return-from $real_fft ($fft input)))
      (locally
	  ;; Setting safety to 0 causes an internal compiler error with CCL 1.11.
	  (declare (optimize (speed 3) (safety #-ccl 0 #+ccl 1)))
	;; Compute FFT of shorter complex vector.
	(setf z (maxima-fft:fft-r2-nn z))

	;; Reconstruct the FFT of the original from the parts
	(setf (aref result 0)
	      (complex (* 0.5
			  (+ (realpart (aref z 0))
			     (imagpart (aref z 0))))))
	  
	(let ((sincos (maxima-fft:sincos-table (maxima-fft:log-base2 n)))
	      (n/2 (length z)))
	  (declare (type (simple-array (complex double-float) (*)) sincos))

	  ;;(format t "n/2 = ~A~%" n/2)
	  (loop for k of-type fixnum from 1 below (length z) do
	    (setf (aref result k)
		  (* 0.25 (+ (+ (aref z k)
				(conjugate (aref z (- n/2 k))))
			     (* #c(0 -1d0)
				(aref sincos k)
				(- (aref z k)
				   (conjugate (aref z (- n/2 k)))))))))
	  (setf (aref result (length z))
		(complex 
		 (* 0.5
		    (- (realpart (aref z 0))
		       (imagpart (aref z 0))))))))
	(funcall from-lisp result))))

;;; Maxima's inverse RFFT routine.
;;;
;;; The input is assumed to consist of objects that can be converted
;;; to a complex-valued floats.  The input MUST have a length that is
;;; one more than a power of two, as is returned by RFFT.
(defun $inverse_real_fft (input)
  (multiple-value-bind (ft from-lisp)
      (maxima-fft:find-irfft-converters input)
    ;; declarations + (SPEED 3) tickles bug: https://bugs.launchpad.net/sbcl/+bug/1776091
    #-sbcl (declare (type (simple-array (complex double-float) (*)) ft))
    (let* ((n (1- (length ft))))
      (when (< n 2)
	;; Just use the regular inverse fft to compute these values
	;; because inverse_real_fft below doesn't work for these cases.
	(return-from $inverse_real_fft ($inverse_fft input)))
      (let* ((order (maxima-fft:log-base2 n))
	     (sincos (maxima-fft:sincos-table (1+ order)))
	     (z (make-array n :element-type '(complex double-float))))
	#-sbcl (declare (type (simple-array (complex double-float) (*)) sincos))

	(unless (= n (ash 1 order))
	  (merror "inverse_real_fft: input length must be one more than a power of two, not ~M" (1+ n)))

	(locally
	    #+sbcl nil #-sbcl (declare (optimize (speed 3)))
	  (loop for k from 0 below n
		do
		   (let ((evenpart (+ (aref ft k)
				      (conjugate (aref ft (- n k)))))
			 (oddpart (* (- (aref ft k)
					(conjugate (aref ft (- n k))))
				     (conjugate (aref sincos k)))))
		     (setf (aref z k) (+ evenpart
					 (* #c(0 1d0) oddpart)))))

	  (setf z (maxima-fft:fft-r2-nn z :inverse-fft-p t)))
	(funcall from-lisp z)))))

;; Bigfloat forward and inverse FFTs.  Length of the input must be a
;; power of 2.
(defun $bf_fft (input)
  (multiple-value-bind (z from-lisp)
      (maxima-fft:find-bf-fft-converter input)
    (let ((n (length z)))
      (unless (= n (ash 1 (maxima-fft:log-base2 n)))
	(merror "bf_fft: size of input must be a power of 2, not ~M" n))
      (if (> n 1)
	  (funcall from-lisp (bigfloat::fft-r2-nn z))
	  (funcall from-lisp z)))))

(defun $bf_inverse_fft (input)
  (multiple-value-bind (x unconvert)
      (maxima-fft:find-bf-fft-converter input "bf_inverse_fft")
    (let ((n (length x)))
      (unless (= n (ash 1 (maxima-fft:log-base2 n)))
	(merror "bf_inverse_fft: size of input must be a power of 2, not ~M" n))
      (if (> n 1)
	  (funcall unconvert (bigfloat::fft-r2-nn x :inverse-fft-p t))
	  (funcall unconvert x)))))

(defun $bf_real_fft (input)
  (multiple-value-bind (z from-lisp)
      (maxima-fft:find-bf-rfft-converters input)
    (let* ((n (ash (length z) 1))
	   (result (make-array (1+ (length z)))))

      (when (< n 3)
	(return-from $bf_real_fft ($bf_fft input)))
    
      ;; Compute FFT of shorter complex vector.  NOTE: the result
      ;; returned by bigfloat:fft has scaled the output by the length of
      ;; z.  That is, divided by n/2.  For our final result, we want to
      ;;     divide by n, so in the following bits of code, we have an
      ;;     extra factor of 2 to divide by.
      (setf z (bigfloat::fft-r2-nn z))

      ;;(format t "z = ~A~%" z)
      ;; Reconstruct the FFT of the original from the parts
      (setf (aref result 0)
	    (bigfloat:* 0.5
			(bigfloat:+ (bigfloat:realpart (aref z 0))
				    (bigfloat:imagpart (aref z 0)))))

      (let ((sincos (bigfloat::sincos-table (maxima-fft:log-base2 n)))
	    (n/2 (length z)))
	;;(format t "n/2 = ~A~%" n/2)
	(loop for k from 1 below (length z) do
	  (setf (aref result k)
		(bigfloat:* 0.25 (bigfloat:+ (bigfloat:+ (aref z k)
							 (bigfloat:conjugate (aref z (- n/2 k))))
					     (bigfloat:* #c(0 -1)
							 (aref sincos k)
							 (bigfloat:- (aref z k)
								     (bigfloat:conjugate (aref z (- n/2 k)))))))))
	(setf (aref result (length z))
	      (bigfloat:* 0.5
			  (bigfloat:- (bigfloat:realpart (aref z 0))
				      (bigfloat:imagpart (aref z 0)))))
	(funcall from-lisp result)))))

(defun $bf_inverse_real_fft (input)
  (multiple-value-bind (ft from-lisp)
      (maxima-fft:find-bf-irfft-converters input)
  (let* ((n (1- (length ft))))
    (when (< n 2)
      ;; Just use the regular inverse fft to compute these values
      ;; because inverse_real_fft below doesn't work for these cases.
      (return-from $bf_inverse_real_fft ($bf_inverse_fft input)))

    (let* ((z (make-array n))
	   (order (maxima-fft:log-base2 n))
	   (sincos (bigfloat::sincos-table (1+ order))))

      (unless (= n (ash 1 order))
	(merror "bf_inverse_real_fft: input length must be one more than a power of two, not ~M" (1+ n)))

      (loop for k from 0 below n
	    do
	       (let ((evenpart (bigfloat:+ (aref ft k)
					   (bigfloat:conjugate (aref ft (- n k)))))
		     (oddpart (bigfloat:* (bigfloat:- (aref ft k)
						      (bigfloat:conjugate (aref ft (- n k))))
					  (bigfloat:conjugate (aref sincos k)))))
		 (setf (aref z k)
		       (bigfloat:+ evenpart
				   (bigfloat:* #c(0 1) oddpart)))))

      ;;(format t "z = ~A~%" z)
      (let ((inverse (bigfloat::fft-r2-nn z :inverse-fft-p t)))
	;;(format t "inverse = ~A~%" inverse)
	(funcall from-lisp inverse))))))