1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
Quantum Computing Simulator for Maxima
Copyright (C) 2021 Jaime E. Villate
Time-stamp: "2022-03-19 13:52:00 villate"
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
/*
linsert
Inserts an expression or list "e" into a list "list" at position "pos".
The list could be empty and "pos" must be an integer between 1 and the
length of "list" plus 1.
*/
linsert(e, list, pos) := block(
if not(listp(e)) then e: [e],
append(rest(list, pos-length(list)-1), e, rest(list, pos-1)))$
/*
lreplace
If e is a list of length n, the elements in the positions pos, pos+1,
..., pos+n-1 of the list "list" are replaced by e, or the first elements
of e if the end of "list" is reached.
If e is an expression, the element in position "pos" of "list" is
replaced by that expression.
"pos" must be an integer between 1 and the length of "list".
*/
lreplace(e, list, pos) := block([r: copylist(list)],
if not(listp(e)) then e: [e],
for i:0 thru min(length(e)-1, length(list)-pos) do r[pos+i]: e[i+1],
r)$
/* binlist
Should be called with one or two arguments, binlist(k) or binlist(k,n),
where k and n are natural numbers. With only one argument, a list of
binary digits is returned, which are the representation of k in binary.
With two arguments, zeros are included at the beginning in order
to return a list with exactly n binary digits. Notice that for the result
to represent a possible state of m qubits, n should be equal to 2^m and
k should be between 0 and 2^m-1.
*/
binlist([n]):= block([m:n[1], q, l:[], k],
do([m,q]: divide(m, 2), l: cons(q,l), if m=0
then (
if length(n)>1
then (
k: length(l),
for i:1 thru n[2]-k do l:cons(0,l)),
return(l))))$
/* binlist2dec
Given a list with n binary digits, it returns the decimal number it
represents.
*/
binlist2dec(l) := block([m:l[1]],
for i:2 thru length(l) do m:m*2+l[i],
m)$
/* tprod
Returns the tensor product of n matrices or n lists.
*/
tprod([ops]) := block(
if listp(ops[1])
then list_matrix_entries(apply(tprod,map(matrix,ops)))
else lreduce(kronecker_product, ops))$
/* normalize
Returns the normalized version of a quantum state given as a list q.
*/
normalize(q) := block([p:0],
for b in q do p: p+cabs(b)^2,
for i:1 thru length(q) do q[i]: rootscontract(radcan(q[i]/sqrt(p))),
q)$
/* qubits
Returns a list with 2^n elements, representing the state of n qubits.
The argument can be a single natural number n, or n binary digits.
If given only one natural number, greater than 1, it returns the ground
state for a system of n qubits.
If given n binary digits (n can be 1), it returns the state of a system
of n qubits with those binary values.
*/
qubits([b]) := block([l],
if (length(b) = 1) and (first(b) > 1)
then cons(1, makelist(0,2^first(b)-1))
else (
l: makelist(0,2^length(b)),
l[binlist2dec(b)+1]: 1,
l))$
/* gate
Applies a matrix U, acting on mu qubits on the list q corresponding
to a state of mq qubits (mq >= mu).
When U acts on several qubits (mu > 1), and no more arguments are
given, the matrix will act on qubits 1, 2, ..., mu. A third
argument can be given, a integer from 1 through mq+1-mu, in which
case the matrix will act on qubits i through i+mu-1.
When U acts on only one qubit (mu = 1), and no more arguments are
given, the matrix will act in all of the qubits. If more arguments
are given, they should be different integer numbers between 1 and
nq, and the matrix will act in the qubits corresponding to those
numbers.
U can be a symbol representing one of the predefined matrices.
It modifies the list q and returns that new list.
*/
gate(U,q,[bits]) := block([nq: length(q), mq, nu, mu, ln, lk, j, l, aux],
if symbolp(U) then U: qmatrix[U],
nu: length(U[1]),
mq: round(float(log(nq)/log(2))),
mu: round(float(log(nu)/log(2))),
if length(bits) = 0
then (
if mu > 1
then bits:[1]
else bits: makelist(j, j, 1, mq)),
for i in bits do (
aux: makelist(0,nq),
for n:1 thru nq do (
ln: binlist(n-1, mq),
j: binlist2dec(rest(rest(ln, i-1), mu+i-mq-1)) + 1,
for k:1 thru nu do (
lk: binlist(k-1, mu),
l: binlist2dec(lreplace(lk, ln, i)) + 1,
aux[n]: aux[n] + U[j][k]*q[l])),
for n:1 thru nq do q[n]: aux[n]),
q)$
/* gate_matrix
Creates the matrix corresponding to the action of a single qbit matrix U
acting on one of several of the qubits in a state of n qubits.
The first argument must be a 2 by 2 matrix or a symbol representing one
of the predefined matrices.
There must be a second argument, a natural number, corresponding to the
total number of qbits.
If no more arguments are given, the matrix will act in all of the qubits.
If there are more arguments, they should be one or more different
natural numbers, between 1 and n, and the matrix will act in the qubits
corresponding to those numbers.
It returns a 2^n by 2^n matrix.
*/
gate_matrix(U,n,[bits]) := block([lU],
if symbolp(U) then U: qmatrix[U],
if length(bits) = 0
then apply(tprod, makelist(U, n))
else (
lU: makelist(ident(2), n),
for i in bits do lU[i]: U,
apply(tprod, lU)))$
/* controlled
Applies a matrix U, acting on mu qubits, on qubits i through i+mu-1
on the state q of a system of mq qubits (mq > mu), when the value of
the c'th qubit in q equals 1.
i should be an intenger between 1 and mq+1-mu.
c should be an integer within 1 and mq, excluding the qubits to be
modified (i through i+mu-1)
U can be a symbol representing one of the predefined matrices.
It modifies the list q and returns that new list.
*/
controlled(U,q,c,i) := block([nq: length(q), mq, nu, mu, ln, lk, j, l, aux],
if symbolp(U) then U: qmatrix[U],
aux: makelist(0,nq),
nu: length(U[1]),
mq: round(float(log(nq)/log(2))),
mu: round(float(log(nu)/log(2))),
for n:1 thru nq do (
ln: binlist(n-1, mq),
if (ln[c] = 1)
then (
j: binlist2dec(rest(rest(ln, i-1), mu+i-mq-1)) + 1,
for k:1 thru nu do (
lk: binlist(k-1, mu),
l: binlist2dec(lreplace(lk, ln, i)) + 1,
aux[n]: aux[n] + U[j][k]*q[l]))
else (
aux[n]: q[n])),
for n:1 thru nq do q[n]: aux[n],
q)$
/* CNOT
Changes the value of the j'th qubit, in a state q of m qubits, when
the value of the i'th qubit equals 1.
It modifies the list q and returns its modified value.
*/
CNOT(q,i,j) := block([lst: [], n: length(q), d, m, k],
m: round(float(log(length(q))/log(2))),
d: 2^m/2^j,
if (m > 2)
then (
for b:0 thru n/4-1 do (
lst: binlist(b, m-2),
if (i < j)
then lst: linsert(0, linsert(1,lst,i), j)
else lst: linsert(1, linsert(0,lst,j), i),
k: binlist2dec(lst)+1,
[q[k],q[k+d]]: [q[k+d],q[k]]))
else (
[q[4-i],q[4-i+d]]: [q[4-i+d],q[4-i]]),
q)$
/* qswap
Interchanges the states of bits i and j in the qubits state q.
It modifies the list q and returns its modified value.
*/
qswap(q, i, j) := (CNOT(q, i, j), CNOT(q, j, i), CNOT(q, i, j))$
/* toffoli
Changes the value of the k'th qubit, in a state q of m qubits, when
the value of the i'th snf j'th qubitd equal 1.
It modifies the list q and returns its modified value.
*/
toffoli(q,i,j,k) := block([lst: [], n: length(q), c, d, m],
m: round(float(log(length(q))/log(2))),
d: 2^m/2^k,
if (m > 3)
then (
for b:0 thru n/8-1 do (
lst: binlist(b, m-3),
if (i < j)
then (
if (i < k)
then (
if (j < k)
then lst: linsert(0, linsert(1, linsert(1,lst,i), j), k)
else lst: linsert(1, linsert(0, linsert(1,lst,i), k), j))
else lst: linsert(1, linsert(0, linsert(1,lst,j), k), i))
else if (i < k)
then lst: linsert(0, linsert(1, linsert(1,lst,j), i), k)
else (
if (j < k)
then lst: linsert(1, linsert(1, linsert(0,lst,k), i), j)
else lst: linsert(1, linsert(1, linsert(0,lst,k), j), i)),
c: binlist2dec(lst)+1,
[q[c],q[c+d]]: [q[c+d],q[c]]))
else (
[q[8-d],q[8]]: [q[8],q[8-d]]),
q)$
/* qmeasure
Measures the value of one or more qubits in a system of n qubits with
state q.
It requires 1 or more arguments. The first argument must be the state q.
If no more arguments are given, all the n qubits will be measured.
If more arguments are given, they should be different natural numbers
between 1 and n, and the state of those qubits will be measured.
It returns a list with the values of the qubits measured (either 0 or 1),
in the same order that the were requested or in ascending order if no
second argument was given.
It modifies the list q, reflecting the collapse of the quantum state
after the measurement.
*/
qmeasure(q,[bits]) := block([r, p, l:[], bl, n, m, v, result: [],
test:true],
n: length(q),
m: round(float(log(n)/log(2))),
if length(bits) = 0 then bits: makelist(j, j, 1, m),
for i in bits do (
r: random(1.0),
p: 0,
for j:1 thru n do (
if not(test) then return(),
if constantp(q[j])
then (
bl: binlist(j-1,m),
if bl[i] = 0 then p: p+cabs(q[j])^2)
else test:false),
if test
then (
if r<p then v:0 else (v:1, p: 1-p),
for j: 1 thru n do (
bl:binlist(j-1,m),
if bl[i]=v
then (
if atom(p)
then q[j]: q[j]/sqrt(p)
else q[j]: rootscontract(radcan(q[j]/sqrt(p))))
else q[j]: 0),
result: endcons(v, result))),
result)$
/* qdisplay
Represents the state q of a system of n qubits as a linear combination
of the computational states with n binary digits.
It returns an expression including strings and symbols.
*/
qdisplay(q):=block([n, m, s, g:1, v, sg: ["-","",""], test:true],
n:length(q),
m:round(float(log(n)/log(2))),
for e in q do
/* Find the GCD only where the non-zero components are expressions
**** Currently disabled ****
if ((imagpart(e) = 0) and atom(e) and (sign(e) # 'zero)) then test: false,
if test
then g: 1/lreduce('gcd, q)
else g: 1, */
if (g = 1) and (length(q) > 1) then s: "" else s: "(",
for i:1 thru n do (
if (g = 1)
then v: q[i]
else v: q[i]*g,
if ((imagpart(v) # 0) or (sign(v) # 'zero))
then (
if (numberp(v) or ((imagpart(v) = 0) and atom(v) and (sign(v) # 'pnz)))
then (
if ((imagpart(v^2-1) = 0) and (sign(v^2-1) = 'zero))
then s:concat(s, sg[round((v+3)/2)], printf(false,"|~v,'0b>",m,i-1))
elseif (sign(v) = 'neg)
then s:concat(s, sg[3], printf(false,"~a|~v,'0b>",v,m,i-1))
else s:concat(s, sg[2], printf(false,"~a|~v,'0b>",v,m,i-1)))
elseif atom(v)
then s: concat(s, sg[2], printf(false,"~a|~v,'0b>",v,m,i-1))
else s: concat(s, sg[2], printf(false,"(~a)|~v,'0b>",v,m,i-1)),
sg: [" -"," +"," "])),
if (g # 1)
then (
if atom(g)
then s: concat(s, printf(false,")/~a",g))
else s: concat(s, printf(false,")/(~a)",g))),
s)$
/*
Predefined matrices.
*/
qmatrix[I]: matrix([1,0],[0,1])$
qmatrix[X]: matrix([0,1],[1,0])$
qmatrix[Y]: matrix([0,-%i],[%i,0])$
qmatrix[Z]: matrix([1,0],[0,-1])$
qmatrix[H]: matrix([1,1],[1,-1])/sqrt(2)$
qmatrix[S]: matrix([1,0],[0,%i])$
qmatrix[T]: matrix([1,0],[0,exp(%i*%pi/4)])$
Rx(ang) := matrix([cos(ang/2),-%i*sin(ang/2)],[%i*sin(ang/2),cos(ang/2)])$
Ry(ang) := matrix([cos(ang/2),-sin(ang/2)],[sin(ang/2),cos(ang/2)])$
Rz(ang) := matrix([cos(ang/2)-%i*sin(ang/2),0],[0,cos(ang/2)+%i*sin(ang/2)])$
|