File: atensor.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (211 lines) | stat: -rw-r--r-- 6,795 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/* Copyright (C) 2004 Viktor T. Toth <http://www.vttoth.com/>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
 * useful, but WITHOUT ANY WARRANTY; without even the implied
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 * PURPOSE.  See the GNU General Public License for more details.
 *
 * Algebraic tensor manipulation
 *
 */

if get('atensor,'version)#false then error("ATENSOR already loaded!")$

alg_type: 'universal;
asymbol:v;
adim:0;
aform:diagmatrix(3,1);

dotscrules:true;
dotdistrib:true;
dotexptsimp:false;

abasep(v):=if not atom(v) and mapatom(v) and op(v)=asymbol and length(v)=1
              and part(v,1)>0 and part(v,1)<=adim then true else false;

/* declare(..,scalarp) doesn't work on function names, which is why
   we need some special rules here. */
scalarfunp(x):=if not atom(x) and (op(x)=nounify(sf) or op(x)=nounify(af))
               then true else scalarp(x);
nonscfunp(x):=if atom(x) or (op(x)#nounify(sf) and op(x)#nounify(af))
              then not scalarp(x) else false;

matchdeclare([nonsc1,nonsc2], nonscfunp());
matchdeclare([scalarf],scalarfunp());
matchdeclare([abasev1,abasev2],abasep());

defrule(scalarfun1,nonsc1.scalarf,nonsc1*scalarf);
defrule(scalarfun2,scalarf.nonsc2,nonsc2*scalarf);

defrule(grassmann1,nonsc1.nonsc1,0);
defrule(grassmann2,nonsc1.nonsc2,
        if ordergreatp(nonsc1,nonsc2) then -nonsc2.nonsc1 else nonsc1.nonsc2);
defrule(clifford1,nonsc1.nonsc1,sf(nonsc1,nonsc1));
defrule(clifford2,nonsc1.nonsc2,
        if ordergreatp(nonsc1,nonsc2) then -nonsc2.nonsc1+2*sf(nonsc2,nonsc1) else nonsc1.nonsc2);
defrule(symmetric,nonsc1.nonsc2,
        if ordergreatp(nonsc1,nonsc2) then nonsc2.nonsc1 else nonsc1.nonsc2);
defrule(symplectic,nonsc1.nonsc2,
        if ordergreatp(nonsc1,nonsc2) then nonsc2.nonsc1-2*af(nonsc2,nonsc1)
        else nonsc1.nonsc2);
defrule(lie_envelop,nonsc1.nonsc2,
        if ordergreatp(nonsc1,nonsc2) then nonsc2.nonsc1-2*av(nonsc2,nonsc1)
        else nonsc1.nonsc2);
defrule(complex1,abasev1.abasev1,-1);

atenrules:[
 [grassmann,[grassmann1,grassmann2]],
 [clifford,[clifford1,clifford2]],
 [symmetric,[symmetric]],
 [symplectic,[symplectic]],
 [lie_envelop,[lie_envelop]]
];

/* Recursively simplify an atensor expression, with special attention
   paid to the fact that mnctimes can have multiple arguments;
   furthermore, we don't want dot products to end up as arguments
   to av(), af(), or sf(). The counter j is to ensure that the function
   always terminates. Admittedly, this is not a very efficient
   implementation and can use improvements, but it does provide results
   that are compatible with commercial MACSYMA. */
atensimp(exp):=block
(
  [i,j,exp1,exp2,exp3,done],
  if not mapatom(exp) then exp:map(atensimp,exp),

  for j thru 10 do
  (
    done:false,
    exp1:exp,
    while not done do
    (
      done:true,
      if not atom(exp1) and op(exp1)="." and length(args(exp1))>2 then block
      (
        [argv:args(exp1)],
        for i thru length(argv)-1 do
        (
          exp2:"."(argv[i],argv[i+1]),
          exp3:atensimp(exp2),
          if exp2#exp3 then
          (
            exp1:apply(".",append(rest(argv,-length(argv)+i-1),[exp3],
                                  rest(argv,i+1))),
            exp1:ev(exp1,simp),
            i:length(argv),
            done:false
          )
        )
      )
    ),
    if exp#exp1 then exp:atensimp(exp1) else
      for i thru length(atenrules) do
        if atenrules[i][1]=alg_type then
    (
      exp2:apply('applyb1,cons(exp,atenrules[i][2])),
      exp2:ev(exp2,simp),
      exp2:applyb1(exp2,scalarfun1,scalarfun2),
      exp2:ev(exp2,simp),
      if exp=exp2 then j:10
      else exp:(if mapatom(exp2) then exp2 else map(atensimp,exp2))
    )
  ),
  exp
);

init_atensor(algname, [optdims]):=
(
  if algname='universal or algname='grassmann or algname='clifford or
     algname='symmetric or algname='symplectic or algname='lie_envelop then
  (
    alg_type:algname,
    if alg_type='symplectic then
    (
      adim:0,
      kill(aform),
      if length(optdims)>0 then
      (
        adim:optdims[1],
        aform:zeromatrix(optdims[1],optdims[1]),
        for i thru adim do
          for j thru i-1 do
        (
          aform[i,j]:if evenp(i+j) then 1 else -1,
          aform[j,i]:-aform[i,j]
        ),
        if length(optdims)>1 then
        (
          for i thru optdims[2] do
            aform:addrow(aform,makelist(0,j,1,adim)),
          adim:adim+optdims[2],
          for i thru optdims[2] do
            aform:addcol(aform,makelist(0,j,1,adim))
        ),
        if length(optdims)>2 then error("Invalid optional dimensions"),
        optdims:[]
      )
    )
    else if alg_type='clifford then block
    (
      [p:0,z:0,n:0],
      if length(optdims)>0 then p:optdims[1],
      if length(optdims)>1 then z:optdims[2],
      if length(optdims)>2 then n:optdims[3],
      if length(optdims)>3 then error("Invalid optional dimensions"),
      adim:p+z+n,
      if adim>0 then
      (
        aform:ident(adim),
        for i from p+1 thru p+z do aform[i,i]:0,
        for i from p+z+1 thru adim do aform[i,i]:-1
      )
      else kill(aform),
      optdims:[]
    )
    else if length(optdims)>0 then
    (
      if length(optdims)>1 then error("Invalid optional dimensions"),
      adim:optdims[1],
      aform:ident(adim),
      if alg_type='lie_envelop then
      (
        for i thru adim do for j thru i do
          if i=j then aform[i,j]:0
          else aform[i,j]:-(aform[j,i]:(remainder(2*adim+2-i-j,adim)+1)*
                              signum(i-j)*(if oddp(i+j) then 1 else -1))
      ),
      optdims:[]
    )
    else
    (
      kill(aform),
      adim:0
    )
  )
  else if algname='complex then init_atensor(clifford,0,0,1)
  else if algname='quaternion then init_atensor(clifford,0,0,2)
  else if algname='pauli then init_atensor(clifford,3)
  else if algname='dirac then init_atensor(clifford,3,0,1)
  else error("Unknown algebra name"),
  if optdims#[] then error("No optional dimensions permitted for this algebra"),
  done
);

af(u,v):=if abasep(u) and abasep(v) then aform[part(u,1),part(v,1)]
         else 'af(u,v);
sf(u,v):=if abasep(u) and abasep(v) then aform[part(u,1),part(v,1)]
         else 'sf(u,v);
av(%u,%v):=if abasep(%u) and abasep(%v) then block
           (
             [i:aform[part(%u,1),part(%v,1)]],
             if abs(i)>0 and abs(i)<=adim then asymbol[abs(i)]*signum(i) else 0
           )
           else 'av(%u,%v);


put('atensor,'v20081223,'version)$