1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* Copyright (C) 2004 Viktor T. Toth <http://www.vttoth.com/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* Supplement to itensor.lisp: implementation of frames and torsion
*
*/
inonmet_flag:false;
iframe_bracket_form:true;
defcon(ifr,ifri,ifg);
defcon(ifg,ifg,kdelta);
SYM; /* So that 5.9.1 knows about this as a case-insensitive symbol */
/* Helper function to get the metric tensor or return an error */
_g([l]):=if iframe_flag then apply(nounify(ifg), l)
else if (?boundp)('imetric) then
apply(nounify(if true then imetric),l)
else error("Name of metric must be specified");
/* Helper functions to conditionally apply the nonmetricity and
torsion tensors only if itorsion_flag:true */
_inm([l]):=if inonmet_flag then apply('inm,l) else 0;
_itr([l]):=if itorsion_flag then apply('itr,l) else 0;
/* Coefficient used internally when computing the rotation coefficients */
/*%icc1(l):=block([i:idummy()],'ifr([l[1]],[i])*_g([l[2],l[3]],[],i)+
* _inm([l[1]],[])*_g([l[2],l[3]],[])-_itr([l[1],l[2],l[3]])-
* 'ifb([l[1],l[2]],[i])*_g([i,l[3]],[]))/2; */
/* The frame bracket */
ifb(l,[ld]):=if length(ld)>0 and rest(ld)#[] then
apply('idiff,cons(ifb(l),rest((?putinones)(rest(ld)))))
else if length(ld)>0 and length(ld[1])>0 then
block([e:idummy()],
_g([],[e,ld[1][1]])*funmake(ifb,[append(l,[e]),rest(ld[1])])
)
else block([e:idummy(),f:idummy()],
if iframe_bracket_form or itorsion_flag then
'ifr([l[2]],[e])*'ifr([l[3]],[f])*
('ifri([l[1],e],[],f)-'ifri([l[1],f],[],e)-
_itr([e,f],[m])*ifri([l[1],m],[])
)
else 'ifri([l[1],e],[])*('ifr([l[2]],[f])*'ifr([l[3]],[e],f)-
'ifr([l[2]],[e],f)*'ifr([l[3]],[f]))
);
/* The connection coefficients */
icc1(l,[ld]):=if length(ld)>0 and rest(ld)#[] then
apply('idiff,cons(icc1(l),rest((?putinones)(rest(ld)))))
else
(if iframe_flag then 'ifc1(l,[])
else 'ichr1(l,if length(ld)>0 then ld[1] else []))+
(if itorsion_flag and not iframe_flag then -'ikt1(l,[]) else 0)+
(if inonmet_flag then -'inmc1(l,[]) else 0);
icc2(l1,l2,[ld]):=
if ld#[] then apply('idiff,cons(icc2(l1,l2),rest((?putinones)(ld))))
/*else block([d:idummy()],_g([],[l2[1],d])*(%icc1([l1[1],d,l1[2]])-
%icc1([d,l1[2],l1[1]])+%icc1([l1[2],l1[1],d]))/2);*/
else
(if iframe_flag then 'ifc2(l1,l2) else 'ichr2(l1,l2))+
(if itorsion_flag and not iframe_flag then -'ikt2(l1,l2) else 0)+
(if inonmet_flag then -'inmc2(l1,l2) else 0);
/* The frame coefficients */
ifc1(l,[ld]):=if length(ld)>0 and rest(ld)#[] then
apply('idiff,cons(ifc1(l),rest((?putinones)(rest(ld)))))
else ('ifb(l)+'ifb([l[2],l[3],l[1]])-'ifb([l[3],l[1],l[2]]))/2;
ifc2(l1,l2,[ld]):=if length(ld)>0 then
apply('idiff,cons(ifc2(l1,l2),rest((?putinones)(ld))))
else block([d:idummy()],_g([],[l2[1],d])*'ifc1([l1[1],l1[2],d]));
/* The nonmetricity coefficients */
inmc1(l,[ld]):=if not inonmet_flag then 0
else if length(ld)>0 and rest(ld)#[] then
apply('idiff,cons(inmc1(l),rest((?putinones)(rest(ld)))))
else (-_inm([l[1]])*_g([l[2],l[3]])-_inm([l[2]])*_g([l[1],l[3]])+
_inm([l[3]])*_g([l[1],l[2]]))/2;
inmc2(l1,l2,[ld]):=if not inonmet_flag then 0
else if ld#[] then apply('idiff,cons(inmc2(l1,l2),rest((?putinones)(ld))))
else block([m:idummy()],(-_inm([l1[1]])*'kdelta([l1[2]],[l2[1]])-
_inm([l1[2]])*'kdelta([l1[1]],[l2[1]])+
_g([],[l2[1],m])*_inm([m])*_g([l1[1],l1[2]]))/2);
/* Contortion */
ikt1(l,[ld]):=if not itorsion_flag then 0
else if length(ld)>0 and rest(ld)#[] then
apply('idiff,cons(ikt1(l),rest((?putinones)(rest(ld)))))
else block([d:idummy()],(-_g([l[3],d])*_itr([l[1],l[2]],[d])-_g([l[2],d])*
_itr([l[3],l[1]],[d])-_g([l[1],d])*_itr([l[3],l[2]],[d]))/2);
ikt2(l1,l2,[ld]):=if not itorsion_flag then 0
else if ld#[] then apply('idiff,cons(ikt2(l1,l2),rest((?putinones)(ld))))
else block([e:idummy()],_g([],[l2[1],e])*'ikt1([l1[1],l1[2],e]));
/* Simplify expressions containing the metric tensor's derivatives */
/* v1
simpmetderiv(exp):=
(
if atom(exp) then exp
else if op(exp)="-" then -simpmetderiv(-exp)
else if op(exp)="+" then funmake("+", map(simpmetderiv, args(exp)))
else if op(exp)="/" then
simpmetderiv(part(exp,1))/simpmetderiv(part(exp,2))
else if op(exp)="*" then
block([sign:1,args:args(exp)],
for i thru length(args) do
for j thru length(args) do
(
if i#j and ?rpobj(args[i]) and ?rpobj(args[j]) and
op(args[i])=imetric and op(args[j])=imetric then
block(
[a:if length(covi(args[i]))>0 then args[i] else args[j],
b:if length(covi(args[i]))>0 then args[j] else args[i]],
if length(covi(a)) = 2 and length(conti(a)) = 0 and
length(covi(b)) = 0 and length(conti(b)) = 2 and
length(?intersect(covi(a),conti(b))) = 1 then
(
if (flipflag and length(deri(a)) = 1 and
length(deri(b)) = 0) or
(not flipflag and length(deri(a)) = 0 and
length(deri(b)) = 1) then
block(
[tmp:deri(a)],
args[i]:funmake(op(a),
append([covi(a),conti(a)],deri(b))),
args[j]:funmake(op(b),append([covi(b),conti(b)],tmp)),
sign:-sign
)
)
)
),
sign*funmake("*",args)
)
else exp
); */
simpmetderiv(exp,[stop]):=
(
if atom(exp) then exp
else if op(exp)="-" then -apply(simpmetderiv,cons(-exp,stop))
else if op(exp)="+" then
funmake("+", map(lambda([x],apply(simpmetderiv,cons(x,stop))), args(exp)))
else if op(exp)="/" then apply(simpmetderiv,cons(part(exp,1),stop))/
apply(simpmetderiv,cons(part(exp,2),stop))
else if op(exp)="*" then
block([sign:1,args:args(exp)],
for i thru length(args) do
for j thru length(args) do
(
if i#j and ?rpobj(args[i]) and ?rpobj(args[j]) and
op(args[i])=imetric and op(args[j])=imetric then
block(
[a:if length(covi(args[i]))>0 then args[i] else args[j],
b:if length(covi(args[i]))>0 then args[j] else args[i]],
if length(covi(a)) = 2 and length(conti(a)) = 0 and
length(covi(b)) = 0 and length(conti(b)) = 2 and
(
(
sort(covi(a)) = sort(conti(b)) and
length(deri(a)) = 1 and length(deri(b)) = 1 and
(
(flipflag and
ordergreatp(deri(a)[1], deri(b)[1])) or
(not flipflag and
ordergreatp(deri(b)[1], deri(a)[1]))
)
) or
(
length(covi(a)) = 2 and length(conti(a)) = 0 and
length(covi(b)) = 0 and length(conti(b)) = 2 and
length(intersect(setify(covi(a)),setify(conti(b)))) >= 1 and
(
(flipflag and length(deri(a)) = 1 and
length(deri(b)) = 0) or
(not flipflag and length(deri(a)) = 0 and
length(deri(b)) = 1)
) and (sign:-sign) # 0
)
) then
block(
[tmp:deri(a)],
args[i]:funmake(op(a),
append([covi(a),conti(a)],deri(b))),
args[j]:funmake(op(b),append([covi(b),conti(b)],tmp)),
if stop#[] then i:j:length(args)
)
)
),
sign*funmake("*",args)
)
else exp
);
/* Always true symmetries */
decsym(ichr1,3,0,[sym(1,2)],[]);
decsym(ichr2,2,1,[sym(all)],[]);
decsym(icurvature,3,1,[anti(2,3)],[]);
/* decsym(ifb,3,0,[anti(2,3)],[]); <-- not valid with torsion
* decsym(icc1,3,0,[sym(1,2)],[]);
* decsym(icc2,2,1,[sym(all)],[]);
* decsym(ifc1,3,0,[sym(1,2)],[]);
* decsym(ifc2,2,1,[sym(all)],[]);
* decsym(ikt1,3,0,[sym(1,2)],[]);
* decsym(ikt2,2,1,[sym(all)],[]);*/
|