1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/* z-transform code
* Copyright 2007 by Robert Dodier
* I release this work under terms of GNU General Public License
*
* Summary. Z-transforms for various special cases are implemented as
* pattern-matching rules. Given an expression like z_transform(foo(n, z), n, z),
* for most rules it's necessary to have the variables n and z in hand before
* looking at foo(n, z). However, the Maxima pattern matcher does not have
* backtracking, so one rule (r0 below) captures n and z, then all other
* rules are applied.
*
* The inverse transform isn't implemented yet. For some inspiration, see:
* http://ece.citadel.edu/barsanti/elec407/L3%20Inverse%20Z%20Transforms.pdf
* and: http://www.reduce-algebra.com/docs/ztrans.pdf
*/
put ('z_transform, true, 'present);
apply_z_transform (e) := apply1 (e, r0);
matchdeclare ([nn, zz], symbolp);
matchdeclare (aa, all);
defrule (r0,
z_transform (aa, nn, zz),
block ([nn% : nn, zz% : zz],
apply1
(z_transform (aa, nn, zz),
r913_1a, r913_1b, r913_2a, r913_2b, r913_3a, r913_3b,
r913_4, r913_5, r913_6, r913_7, r913_10, r913_12, r914_4,
r914_6, /* r914_9, */ r914_10, r914_11a, r914_11b, r914_12,
r914_13, r914_14, r914_15a, r914_16)));
/* Some specific transforms.
* Table 9.1.3 at: http://mathfaculty.fullerton.edu/MATHEWS/C2003/ZTRANSFORMINTROMOD.HTML
*/
/* (1) delta[n] --> 1
* (have to try kron_delta both ways ... sigh)
*/
simp : false;
defrule (r913_1a,
z_transform (kron_delta (nn%, aa), nn%, zz%),
zz^(- aa));
defrule (r913_1b,
z_transform (kron_delta (aa, nn%), nn%, zz%),
zz^(- aa));
simp : true;
/* (2) u[n] --> z/(z - 1) */
defrule (r913_2a,
z_transform (1, nn%, zz%),
zz/(zz - 1));
defrule (r913_2b,
z_transform (unit_step (nn%), nn%, zz%),
zz/(zz - 1));
/* (3) b^n --> z/(z - b) */
matchdeclare (bb, freeof (nn%, zz%));
defrule (r913_3a,
z_transform (bb^nn%, nn%, zz%),
zz/(zz - bb));
defrule (r913_3b,
z_transform (1/(bb^nn%), nn%, zz%),
zz/(zz - 1/bb));
/* (4) b^(n - 1) * u[n - 1] --> 1/(z - b) */
defrule (r913_4,
z_transform (bb^(nn% - 1) * unit_step (nn% - 1), nn%, zz%),
1 / (zz - bb));
/* (5) e^(a*n) --> z/(z - e^a) */
matchdeclare (aa, lambda ([e], e # 0 and freeof (nn%, zz%, e)));
defrule (r913_5,
z_transform (exp (aa * nn%), nn%, zz%),
zz / (zz - exp (aa)));
/* (6) n --> z/(z - 1)^2 */
defrule (r913_6,
z_transform (nn%, nn%, zz%),
zz / (zz - 1)^2);
/* (7) n^2 --> z*(z + 1)/(z - 1)^3 */
defrule (r913_7,
z_transform (nn%^2, nn%, zz%),
zz*(zz + 1) / (zz - 1)^3);
/* (8) b^n*n --> b*z/(z - b)^2
* via (6) + frequency scaling
*/
/* (9) e^(a*n)*n --> z*e^a/(z - e^a)^2
* via (6) + complex translation
*/
/* (10) sin(a*n) --> sin(a)*z/(z^2 - 2*cos(a)*z + 1) */
defrule (r913_10,
z_transform (sin (aa*nn%), nn%, zz%),
sin(aa)*zz / (zz^2 - 2*cos(aa)*zz + 1));
/* (11) b^n*sin(a*n) --> sin(a)*b*z/(z^2 - 2*cos(a)*b*z + b^2)
* via (10) + frequency scaling
*/
/* (12) cos(a*n) --> z*(z - cos(a))/(z^2 - 2*cos(a)*z + 1) */
defrule (r913_12,
z_transform (cos (aa*nn%), nn%, zz%),
zz*(zz - cos(aa)) / (zz^2 - 2*cos(aa)*zz + 1));
/* (13) b^n*cos(a*n) --> z*(z - b*cos(a))/(z^2 - 2*cos(a)*b*z + b^2)
* via (11) + frequency scaling
*/
/* General properties.
* Table 9.1.4 at: http://mathfaculty.fullerton.edu/MATHEWS/C2003/ZTRANSFORMINTROMOD.HTML
*/
/* (4) u[n - m] --> z^(1 - m)/(z - 1)
* (delayed unit step)
*/
matchdeclare (mm, integerp);
defrule (r914_4,
z_transform (unit_step (nn% - mm), nn%, zz%),
zz^(1 - mm) / (zz - 1));
/* (5) x[n - 1]*u[n - 1] --> (1/z)*X(z)
* via (6) w/ m = 1
*/
/* (6) x[n - m]*u[n - m] --> z^(-m)*X(z)
* (time delayed shift)
*/
defrule (r914_6,
z_transform (aa * unit_step (nn% - mm), nn%, zz%),
z^(-m) * z_transform (subst (nn + mm, nn, aa), nn, zz));
/* (7) x[n + 1] --> z*(X(z) - x[0])
* (8) x[n + 2] --> z^2*(X(z) - x[0] - x[1]*z^(-1))
* via (9) w/ m = 1 and m = 2 respectively
*/
/* (9) x[n + m] --> z^m*(X(z) - sum(x[i]*z^(-i), i, 0, m - 1))
* (time forward)
*/
/* HMM, NOT SURE HOW TO DO (9) ... FOLLOWING STUFF IS BROKEN */
matchdeclare (mm, lambda ([e], integerp(e) and e > 0));
defmatch (n_plus_m, nn% + mm);
matchdeclare (xxnpm, lambda ([e], n_plus_m (e) # false));
defrule (r914_9,
z_transform (ss, nn%, zz%),
zz^mm * z_transform (subst (nn - mm, nn, ss), nn, zz));
/* (10) e^(a*n)*x[n] --> X(z*e^(-a))
* (complex translation)
*/
matchdeclare (nz, lambda ([e], e # 0 and freeof (nn%, zz%, e)));
defrule (r914_10,
z_transform (exp (nz * nn%) * bb, nn%, zz%),
'subst (zz/exp(nz), zz, z_transform (bb, nn, zz)));
/* (11) b^n*x[n] --> X(z/b)
* (frequency scaling)
*/
matchdeclare (xx, all);
matchdeclare (bb, freeof (nn%, zz%));
defrule (r914_11a,
z_transform (bb^nn% * xx, nn%, zz%),
'subst (zz/bb, zz, z_transform (xx, nn, zz)));
defrule (r914_11b,
z_transform (1/(bb^nn%) * xx, nn%, zz%),
'subst (zz*bb, zz, z_transform (xx, nn, zz)));
/* (12) n*x[n] --> -z X'(z)
* (differentiation)
*/
matchdeclare (aa, all);
matchdeclare (kk, lambda ([e], integerp(e) and e > 0));
defrule (r914_12,
z_transform (aa*nn%^kk, nn%, zz%),
block ([ee : - zz * 'diff (z_transform (aa, nn, zz), zz)],
for i:2 thru kk do ee : - zz * 'diff (ee, zz), ee));
/* (13) (1/n)*x[n] --> - \int X(z)/z dz
* (integration)
*/
matchdeclare (uu, lambda ([e], not atom(e) and op(e) = "/" and member (nn%, second(e))));
defrule (r914_13,
z_transform (uu, nn%, zz%),
'integrate (zz^-1 * z_transform (aa, nn, zz), zz));
/* (14) 1/(n + m)*x[n] --> - z^(-m) * \int X(z)/z^(m + 1) dz
* (integration shift)
*/
matchdeclare (mm, lambda ([e], integerp(e) and e > 0));
defrule (r914_14,
z_transform (aa/(nn% + mm), nn%, zz%),
- zz^(-mm) * 'integrate (z^-(mm + 1) * z_transform (aa, nn, zz), zz));
/* (15) x[n] (star) y[n] = \sum_{i=0}^n x[i]*y[n - i] --> X(z)*Y(z)
* (discrete time convolution)
*/
matchdeclare (cc, lambda ([e], not atom(e) and op(e) = 'convolution));
defrule (r914_15a,
z_transform (cc, nn%, zz%),
block ([a : args(cc)], product (z_transform (a[i], nn, zz), i, 1 , length(a))));
/* ANOTHER RULE R914_15B FOR EXPLICIT 'SUM EXPRESSION WOULD BE NICE ... */
/* (16) \sum_{i=0}^n x[i] --> z/(z - 1)*X(z)
* (convolution with y[n] = 1)
*/
matchdeclare (ii, symbolp);
simp : false;
defrule (r914_16,
z_transform ('sum (aa, ii, 0, nn%), nn%, zz%),
zz/(zz - 1) * z_transform (subst (nn, ii, aa), nn, zz));
simp : true;
/* ((17) & (18) -- not transform pairs) */
/* (put linearity declaration last, otherwise messes up rules) */
/* (1) addition
* (2) constant multiple
* (3) linearity
*/
declare (z_transform, linear);
|