1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/******************************************************************************
rtest_lambert_w.mac
Test for Lambert W function
******************************************************************************/
kill(all);
done;
(closeto(value,compare,tol):=
block(
[abse],
abse:abs(value-compare),if(abse<tol) then true else abse),
done);
done;
/* Exact values */
lambert_w(-%pi/2)$
%i*%pi/2;
lambert_w(-log(2)/2)$
-log(2);
lambert_w(-1/%e)$
-1;
lambert_w(0)$
0;
lambert_w(%e)$
1;
/* Numerical values. Results from Mathematica 6 */
/* This point -47/128 is slightly greater than the branch cut at x=-1/%e.
Known difficult region. */
closeto(lambert_w(-0.3671875),-0.93988639805243454196,5.0e-15);
true;
closeto(lambert_w(-0.25),-0.35740295618138890306,1.0e-16);
true;
closeto(lambert_w(0.0),0.0,1.0e-16);
true;
closeto(lambert_w(0.5),0.3517337112491958260,1.0e-16);
true;
closeto(lambert_w(2.0),0.85260550201372549134,2.0e-16);
true;
closeto(lambert_w(16.0),2.05319271746264858727,1.0e-16);
true;
closeto(lambert_w(128.0),3.57739529855165334288,1.0e-16);
true;
closeto(lambert_w(2048.0),5.85698416299949388816,1.0e-15);
true;
closeto(float(lambert_w(-%pi/2)),%i*%pi/2,1.0e-16);
true;
closeto(lambert_w(3.0+2*%i),
1.12605402258467335157 + 0.31512993765865848403*%i,1.0e-16);
true;
/* bfloat evaluation. Results from Mathematica 6 to 82 sf */
(oldfpprec:fpprec,fpprec:80,done);
done;
closeto(lambert_w(-0.3671875b0),
-0.9398863980524345419695464132107234809629689590715558376016258594821501408118726902b0,5.0b-79);
true;
closeto(lambert_w(-0.25b0),
-0.3574029561813889030688111040559047533165905550760120436276204485896714025961457963b0,5.0b-80);
true;
closeto(lambert_w(0.0b0),0.0b0,1.0e-80);
true;
closeto(lambert_w(0.5b0),
0.3517337112491958260249093009299510651714642155171118040466438461099606107203387109b0,1.0b-80);
true;
closeto(lambert_w(2.0b0),
0.8526055020137254913464724146953174668984533001514035087721073946525150656742630449b0,1.0b-80);
true;
closeto(lambert_w(16.0b0),
2.053192717462648587277573057065703715549879054683959196524461288893671477132320243b0,5.0b-80);
true;
closeto(lambert_w(128.0b0),
3.577395298551653342882928583858277466679549941663670990487212206804013161129017297b0,1.0b-80);
true;
closeto(lambert_w(2048.0b0),
5.856984162999493888162560618072936017287078565867036752738725003619707275074129900b0,5.0b-80);
true;
closeto(lambert_w(3.0b0+2.0b0*%i),
1.1260540225846733515720001139613054043549635214873248102633125218051215201783683422b0
+
0.3151299376586584840326916101687325819105911412081543422333577478256866198890713045b0
*%i ,1.0b-80);
true;
/* Check an argument > most-positive-double-float ~ 1.0e308 */
closeto(lambert_w(1.0b1000),
2294.846671683506869652792785993616789973426699478802684415757740164730983851156757b0,
1.0b-77);
true;
/* Arguments that are exact numbers are not evaluated numerically */
lambert_w(2);
lambert_w(2);
lambert_w(3+2*%i);
lambert_w(3+2*%i);
/* ... unless we set numer evflag*/
closeto(lambert_w(2),0.85260550201372549134,2.0e-16), numer;
true;
diff(lambert_w(x),x);
%e^-lambert_w(x)/(lambert_w(x)+1);
integrate(lambert_w(x),x);
x*(lambert_w(x)^2-lambert_w(x)+1)/lambert_w(x);
/* SF bug report 2468610 the integrator loops endlessly
errcatch() doesn't catch the error for clisp-2.46 on cygwin */
integrate(lambert_w(1/x),x);
'integrate(lambert_w(1/x),x);
taylor(lambert_w(x),x,0,6);
x-x^2+3*x^3/2-(8*x^4/3)+125*x^5/24-(54*x^6/5);
/******************************************************************************
Tests for Generalized Lambert W function
******************************************************************************/
closeto(generalized_lambert_w(0,-0.25),-0.35740295618138890306,1.0e-16);
true;
closeto(generalized_lambert_w(0,3.0+2*%i),
1.12605402258467335157 + 0.31512993765865848403*%i,1.0e-16);
true;
closeto(generalized_lambert_w(0,-0.25),-0.35740295618138890306,1.0e-16);
true;
/* This point -753/2048 is slightly greater than the branch cut at x=-1/%e.
Known difficult region. */
closeto(generalized_lambert_w(-1,-753.0/2048),-1.033649565301979,5.0e-15);
true;
closeto(generalized_lambert_w(-1,-754.0/2048),
-0.9994844032397146 - 0.0393272270347577*%i,5.32e-15);
true;
closeto(generalized_lambert_w(1,-753.0/2048),
-3.089416043057986+7.461420464927938*%i,5.0e-15);
true;
closeto(generalized_lambert_w(1,-754.0/2048),
-3.088042730569348+7.461585404728464*%i,5.0e-15);
true;
/* Reduced precision when very near branch point z = -1/%e */
closeto(generalized_lambert_w(-1,z:float(-1/%e)-1.0e-12),
-0.999999999998187812 - 2.3316439815951875e-6*%i,1e-9);
true;
/* The branch test was wrong for this point due to roundoff */
closeto(generalized_lambert_w(-1,-1/float(%e)),-1.0,1e-15);
true;
/* bigfloat evaluation near the branch point failed to obtain a starting guess
There is significant (~ 14 decimal digits) loss of precision due to ill-conditioning
The expected answer below checked with 200 and 300 digit bfloats */
closeto(generalized_lambert_w(-1,bfloat(-1/%e)+1b-30),
- 1.000000000000002331643981597126015551421701533827747686376229738168073845444881159b0,
1.0b-64);
true;
closeto(generalized_lambert_w(1,-754.0b0/2048),
-3.088042730569348561456014556706168490039090862315553536854637271843252771228714625b0
+7.461585404728464111653134458076750679263104524925586270112477441975032123188737473b0*%i,
1.0b-77);
true;
/* Check an argument > most-positive-double-float ~ 1.0e308 */
closeto(generalized_lambert_w(0,1.0b1000),
2294.846671683506869652792785993616789973426699478802684415757740164730983851156757b0,
1.0b-77);
true;
closeto(generalized_lambert_w(0,1.0b1000*%i),
2.294846671449550599071991520727747213463470638397366444770394873636319358115746758b3
+1.570112136469240112764525899485121673623387222840770033671975542758566442609326195b0*%i
,1.0b-77);
true;
/* Arguments that are not evaluated numerically */
generalized_lambert_w(3,1/2);
generalized_lambert_w(3,1/2);
generalized_lambert_w(1/2,3.0);
generalized_lambert_w(1/2,3.0);
generalized_lambert_w(0.5,3.0);
generalized_lambert_w(0.5,3.0);
generalized_lambert_w(1.0,3.0);
generalized_lambert_w(1.0,3.0);
generalized_lambert_w(%pi,3.0);
generalized_lambert_w(%pi,3.0);
/* ... unless we set numer evflag */
closeto(generalized_lambert_w(0,2),0.85260550201372549134,2.0e-16), numer;
true;
diff(generalized_lambert_w(n,x),x);
%e^-generalized_lambert_w(n,x)/(generalized_lambert_w(n,x)+1);
integrate(generalized_lambert_w(n,x),x);
(generalized_lambert_w(n,x)^2-generalized_lambert_w(n,x)+1)*x
/generalized_lambert_w(n,x);
(fpprec:oldfpprec, kill(oldfpprec), done);
done;
|