File: rtest_lambert_w.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (234 lines) | stat: -rwxr-xr-x 6,656 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/******************************************************************************
  rtest_lambert_w.mac
  Test for Lambert W function
******************************************************************************/

kill(all);
done;

(closeto(value,compare,tol):=
  block(
    [abse],
    abse:abs(value-compare),if(abse<tol) then true else abse),
    done);
done;


/* Exact values */
lambert_w(-%pi/2)$
%i*%pi/2;
lambert_w(-log(2)/2)$
-log(2);
lambert_w(-1/%e)$
-1;
lambert_w(0)$
0;
lambert_w(%e)$
1;

/* Numerical values.  Results from Mathematica 6 */  

/* This point -47/128 is slightly greater than the branch cut at x=-1/%e.  
   Known difficult region. */
closeto(lambert_w(-0.3671875),-0.93988639805243454196,5.0e-15);
true;

closeto(lambert_w(-0.25),-0.35740295618138890306,1.0e-16);
true;

closeto(lambert_w(0.0),0.0,1.0e-16);
true;

closeto(lambert_w(0.5),0.3517337112491958260,1.0e-16);
true;

closeto(lambert_w(2.0),0.85260550201372549134,2.0e-16);
true;

closeto(lambert_w(16.0),2.05319271746264858727,1.0e-16);
true;

closeto(lambert_w(128.0),3.57739529855165334288,1.0e-16);
true;

closeto(lambert_w(2048.0),5.85698416299949388816,1.0e-15);
true;

closeto(float(lambert_w(-%pi/2)),%i*%pi/2,1.0e-16);
true;

closeto(lambert_w(3.0+2*%i),
  1.12605402258467335157 + 0.31512993765865848403*%i,1.0e-16);
true;

/* bfloat evaluation.  Results from Mathematica 6 to 82 sf */
(oldfpprec:fpprec,fpprec:80,done);
done;

closeto(lambert_w(-0.3671875b0),
 -0.9398863980524345419695464132107234809629689590715558376016258594821501408118726902b0,5.0b-79);
true;

closeto(lambert_w(-0.25b0),
  -0.3574029561813889030688111040559047533165905550760120436276204485896714025961457963b0,5.0b-80);
true;

closeto(lambert_w(0.0b0),0.0b0,1.0e-80);
true;

closeto(lambert_w(0.5b0),
  0.3517337112491958260249093009299510651714642155171118040466438461099606107203387109b0,1.0b-80);
true;

closeto(lambert_w(2.0b0),
  0.8526055020137254913464724146953174668984533001514035087721073946525150656742630449b0,1.0b-80);
true;

closeto(lambert_w(16.0b0),
  2.053192717462648587277573057065703715549879054683959196524461288893671477132320243b0,5.0b-80);
true;

closeto(lambert_w(128.0b0),
  3.577395298551653342882928583858277466679549941663670990487212206804013161129017297b0,1.0b-80);
true;

closeto(lambert_w(2048.0b0),
  5.856984162999493888162560618072936017287078565867036752738725003619707275074129900b0,5.0b-80);
true;

closeto(lambert_w(3.0b0+2.0b0*%i),
1.1260540225846733515720001139613054043549635214873248102633125218051215201783683422b0
+
0.3151299376586584840326916101687325819105911412081543422333577478256866198890713045b0
*%i ,1.0b-80);
true;

/* Check an argument > most-positive-double-float ~ 1.0e308 */
closeto(lambert_w(1.0b1000),
2294.846671683506869652792785993616789973426699478802684415757740164730983851156757b0,
1.0b-77);
true;

/* Arguments that are exact numbers are not evaluated numerically */
lambert_w(2);
lambert_w(2);

lambert_w(3+2*%i);
lambert_w(3+2*%i);

/* ... unless we set numer evflag*/
closeto(lambert_w(2),0.85260550201372549134,2.0e-16), numer;
true;

diff(lambert_w(x),x);
%e^-lambert_w(x)/(lambert_w(x)+1);

integrate(lambert_w(x),x);
x*(lambert_w(x)^2-lambert_w(x)+1)/lambert_w(x);

/* SF bug report 2468610 the integrator loops endlessly 
   errcatch() doesn't catch the error for clisp-2.46 on cygwin */
integrate(lambert_w(1/x),x);
'integrate(lambert_w(1/x),x);

taylor(lambert_w(x),x,0,6);
x-x^2+3*x^3/2-(8*x^4/3)+125*x^5/24-(54*x^6/5);

/******************************************************************************
  Tests for Generalized Lambert W function
******************************************************************************/

closeto(generalized_lambert_w(0,-0.25),-0.35740295618138890306,1.0e-16);
true;

closeto(generalized_lambert_w(0,3.0+2*%i),
  1.12605402258467335157 + 0.31512993765865848403*%i,1.0e-16);
true;

closeto(generalized_lambert_w(0,-0.25),-0.35740295618138890306,1.0e-16);
true;

/* This point -753/2048 is slightly greater than the branch cut at x=-1/%e.  
   Known difficult region. */
closeto(generalized_lambert_w(-1,-753.0/2048),-1.033649565301979,5.0e-15);
true;

closeto(generalized_lambert_w(-1,-754.0/2048),
   -0.9994844032397146 - 0.0393272270347577*%i,5.32e-15);
true;

closeto(generalized_lambert_w(1,-753.0/2048),
  -3.089416043057986+7.461420464927938*%i,5.0e-15);
true;

closeto(generalized_lambert_w(1,-754.0/2048),
  -3.088042730569348+7.461585404728464*%i,5.0e-15);
true;

/* Reduced precision when very near branch point z = -1/%e */
closeto(generalized_lambert_w(-1,z:float(-1/%e)-1.0e-12),
 -0.999999999998187812 - 2.3316439815951875e-6*%i,1e-9);
true;

/* The branch test was wrong for this point due to roundoff */
closeto(generalized_lambert_w(-1,-1/float(%e)),-1.0,1e-15);
true;

/* bigfloat evaluation near the branch point failed to obtain a starting guess 
   There is significant (~ 14 decimal digits) loss of precision due to ill-conditioning 
   The expected answer below checked with 200 and 300 digit bfloats */
closeto(generalized_lambert_w(-1,bfloat(-1/%e)+1b-30),
- 1.000000000000002331643981597126015551421701533827747686376229738168073845444881159b0,
 1.0b-64);
true;

closeto(generalized_lambert_w(1,-754.0b0/2048),
 -3.088042730569348561456014556706168490039090862315553536854637271843252771228714625b0
 +7.461585404728464111653134458076750679263104524925586270112477441975032123188737473b0*%i,
 1.0b-77);
true;

/* Check an argument > most-positive-double-float ~ 1.0e308 */
closeto(generalized_lambert_w(0,1.0b1000),
2294.846671683506869652792785993616789973426699478802684415757740164730983851156757b0,
1.0b-77);
true;

closeto(generalized_lambert_w(0,1.0b1000*%i),
  2.294846671449550599071991520727747213463470638397366444770394873636319358115746758b3
 +1.570112136469240112764525899485121673623387222840770033671975542758566442609326195b0*%i 
 ,1.0b-77);
true;


/* Arguments that are not evaluated numerically */
generalized_lambert_w(3,1/2);
generalized_lambert_w(3,1/2);

generalized_lambert_w(1/2,3.0);
generalized_lambert_w(1/2,3.0);

generalized_lambert_w(0.5,3.0);
generalized_lambert_w(0.5,3.0);

generalized_lambert_w(1.0,3.0);
generalized_lambert_w(1.0,3.0);

generalized_lambert_w(%pi,3.0);
generalized_lambert_w(%pi,3.0);

/* ... unless we set numer evflag */
closeto(generalized_lambert_w(0,2),0.85260550201372549134,2.0e-16), numer;
true;


diff(generalized_lambert_w(n,x),x);
%e^-generalized_lambert_w(n,x)/(generalized_lambert_w(n,x)+1);

integrate(generalized_lambert_w(n,x),x);
(generalized_lambert_w(n,x)^2-generalized_lambert_w(n,x)+1)*x
 /generalized_lambert_w(n,x);

(fpprec:oldfpprec, kill(oldfpprec), done);
done;