File: rtest_limit.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (964 lines) | stat: -rw-r--r-- 20,896 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/*
  A collection of tests to stress $limit and friends
*/
(kill(all),0);
0$

/*
  Tests to check how limit deals with weird combinations of
  infinitesimals and infinities. See bug 2563
*/
limit(zeroa*inf);
und$
limit(zerob^zerob);
und$
limit(zerob^zeroa);
und$

/* Tests from Bug 1036900 */
/* These bugs were fixed in limit.lisp rev 1.7, 2004/10/04 */
limit(7^n/8^n,n,inf);
0$
limit(7^(n^2)/8^n,n,inf);
inf$
limit((10^n+9^n+8^n)^(1/n),n,inf);
10$
limit(4^n/2^(2*n),n,inf);
1$

/* Test from Bug 1052308 */
/* Fixed in limit.lisp rev 1.11 */
assume(equal(zz,0));
[equal(zz,0)]$
limit(erf(nn*zz), nn, inf);
0$
limit(tanh(nn*zz), nn, inf);
0$
limit(nn^zz, nn, 0);
1$

/* Bug 1281737, fixed in limit.lisp rev 1.15 */
limit(atan(x)/(1/exp(1)-exp(-(1+x)^2)),x,inf,plus);
%e*%pi/2;

/* Bug 626697 */
limit(atan2(y,x),y,minf);
-%pi/2;

/* Bug 1548643 */
limit(abs(sqrt(1-1/x)-1),x,0);
inf;

/* Bug 671574 */
limit(x*atan(x)/(x+1),x,inf);
%pi/2;
limit(x*atan(x)-log(x),x,inf);
inf;

/* Bug 1152668 */
numer:true;
true;
limit(sin(x)/x,x,0);
1;
limit(sin(x)/x,x,0,plus);
1;
limit(sin(x)/x,x,0,minus);
1;
numer:false;
false;

/* #2504 wrong answer for simple limit, limit(sin(x)+1/x, x, inf)=0 */
limit(1/x + sin(x), x, inf);
ind;

/* Bug 593344 */
limit(abs(infinity));
inf;

/* Bug 1469411 */
limit(t^2*exp(-4*t/3-8*exp(-t)),t,inf);
0;

/*
 * From bug 535363, but this isn't really fixed.  The fix for 1469411
 * broke this test, so we're adding it to make sure we don't break it.
 *
*/

limit(exp(-1/x)/x^4,x,0,'plus);
0;

/* Bug 1594330 */
limit(x*(atan(x)-%pi/2),x,inf);
-1;

limit((atan(x)-(%pi/2))/(sin(10/x)),x,inf);
-1/10;

/* [ 1498047 ] limit(a/n,n,inf); */
limit(a/n, n, inf);
0;

/*
 * [ 1646761 ] limit atanh @ -1 / 1 all wrong...
 */
/* Limit at 1 is (complex) infinity).  But one-sided limit can be inf (real infinity). */
limit(atanh(x),x,1);
infinity;
limit(atanh(x),x,1,'minus);
inf;
limit(atanh(x),x,-1);
infinity;
limit(atanh(x),x,-1,'plus);
minf;

/* There shouldn't be an error message printed out here.  Need to look at output to see. */
limit(2*atanh(x),x,1);
infinity;
limit(2*atanh(x),x,1,'minus);
inf;

limit(atanh(a-1)-log(a)/2,a,0,'plus),logarc:true;
-log(2)/2;

/* [ 1606731 ] limit of algebraic when algebraic : true */
limit(x*(sqrt(1+x^2)-x),x,inf), algebraic : true, gcd : subres;
1/2;

/* [ 1097982 ] limit(x/(x^(log(x)))); returns wrong answer */
limit(x/(x^log(x)), x, inf);
0;

/* [ 1039965 ] limit(4^n/2^(2*n),n,inf) is wrong */
limit(4^n/2^(2*n),n,inf);
1;

/* [ 1731127 ] limit((1 + 1/x)*(sqrt(x + 1) + 1), x, inf) => 0 (not inf) */
limit((1 + 1/x)*(sqrt(x + 1) + 1), x, inf);
inf;

/* [ 1593083 ] tlimit(t^2*exp(-4*t/3-8*exp(-t)),t,inf) gives error */
tlimit(t^2*exp(-4*t/3-8*exp(-t)),t,inf);
0;

/* [ 1786774 ] tlimit((5^x + 3^x)^(1/x), x, inf) => Error */
tlimit((5^x + 3^x)^(1/x), x, inf);
5;

/* [ 1603900 ] taylor/tlimit (4^n+1)/2^(2*n) internal error */
tlimit((4^n+1)/2^(2*n),n,inf);
1;

/* [ 1281736 ] limit((x/log(x))*(x^(1/x)-1),x,inf) - wrong result */
limit((x/log(x))*(x^(1/x)-1),x,inf);
1;

/* [ 1036901 ] tlimit(7^(n^2)/8^n,n,inf); wrong result */
tlimit(7^(n^2)/8^n, n, inf);
inf;

/* [ 1665657 ] limit fails to find easy limit */
limit(x/(x-1)-1/log(x),x,1,plus);
1/2;

/* [ 611411 ] limit asks sign of IND */
limit(abs(sin(x)),x,inf);
ind;

/* [ 1629723 ] bug in limit, asks sign of IND, encountered in integrator */
limit(abs(sin(x))/x, x, inf);
0;

/* [ 782099 ] limit returns expression in IND */
limit(sinh(exp(%i*x)),x,inf);
ind;

/* #3866 limit(log(sinh(x)),x,0,'plus) --> infinity */
limit(log(sinh(x)),x,0,'plus);
minf;

/* [ 1528607 ] limit(a^x,x,inf) can't solve for a : abs(a) < 1 */
limit((-2/3)^x,x,inf);
0;

limit(signum(x), x, 0, plus);
1;

limit(signum(x), x, 0, minus);
-1;

limit((-1/%pi)^x,x,inf);
0;

tlimit(exp(%i*t), t, inf);
ind;

tlimit(exp(-t+%i*t),t,inf);
0;

/* [ 1811503 ] computing a wrong result */
limit((((1+1/x)^(x^2))+1)^(1/x),x,inf);
%e;

/* [ 1760232 ] limit(1/n * n!^(1/n), n, inf); */
limit(1/n * n!^(1/n), n, inf);
%e^-1;

/* #3681 limit(n^n/(n^n+(n-1)^n),n,inf) wrong */
limit(n^n/(n^n+(n-1)^n), n, inf);
%e/(%e+1);

/* #3682 limit(n^(n-1)/(n^n+(n-1)^n),n,inf) gives Lisp error */
limit(n^(n-1)/(n^n+(n-1)^n),n,inf);
0;

/* Apparently wrong limit with factorial - ID: 3198530 */
limit(1/(2+1/factorial(n)),n,inf);
1/2;

limit(t*(erf((t))-1),t,inf);
0;

/* #3153 Limits of erfc */
limit(erfc(x*(1 + %i)), x, inf);
0;

limit(erfc(x*(1 + %i)), x, minf);
2;

limit(exp(x)*(sin(1/x+exp(-x))-sin(1/x+exp(-x^2))), x, inf);
1;

/* it would be nice to handle this someday
  limit(n - exp(psi[0](n)), n, inf);
  1/2;
*/

limit(x*gamma(x), x, 0);
1;

/* [ 744679 ] limit overflows memory? */
(assume(a>1), limit((a^(1/n)+1)^n/2^n, n, inf));
'sqrt(a);

/* [ 702512 ] limit(1/(1/a*2^(%i*a)+1),a,inf) =&gt; UND */
limit(1/(1/a*2^(%i*a)+1),a,inf);
1;

/* [ 923407 ] limit(atan(sqrt(x))/sqrt(x),x,0) wrong */
limit(atan(sqrt(x))/sqrt(x),x,0);
1;

/* [ 1102908 ] limit/atan/exp returns complex expr with wrong principal val */
limit(atan(x)/(1/exp(1)-exp(-(1+x)^2)),x,inf,plus);
%e*%pi/2;

limit( (3^(1/x) + 5^(1/x))^x, x, 0, minus);
3;

limit( (3^(1/x) + 5^(1/x))^x, x, 0, plus);
5;

limit( (3^(1/x) + 5^(1/x))^x, x, 0);
ind;

/* [ 1852415 ] limit(sqrt(1-%e^(-x^2)), x, inf) = 0 */
limit(sqrt(1-%e^(-x^2)), x, inf);
1;

/* [ 1515712 ] tlimit (x*atan(x)/(x+1),x,inf) => 3 %pi/2, etc */
tlimit(x*atan(x)/(x+1),x,inf);
%pi/2;

tlimit(x*(atan(x)-%pi/2),x,inf);
-1;

tlimit(atan(x^-1), x, 0, minus);
-%pi/2;

/* [ 1973399 ] F(x) := 1/%pi*(atan(x) + %pi/2) */
(assume(c>0), limit(((1/%pi)*(atan(n/%pi) + %pi/2))^n, n, inf));
%e^(-1);

/* [ 1103515 ] limit(atan2(x,-1),x,0) wrong */
limit(atan2(x,-1), x, 0, minus);
-%pi;

limit(atan2(x,-1), x, 0, plus);
%pi;

limit(atan2(x,-1), x, 0);
ind;

/* limit of atan2 - ID: 3539699 */
limit(atan2(x^2-2,x^3-3*x), x, sqrt(2), minus);
-%pi;

limit(atan2(x^2-2,x^3-3*x), x, sqrt(2), plus);
%pi;

limit(atan2((x^2-2), x^3-2*x), x, sqrt(2), minus);
atan(1/sqrt(2))-%pi;

limit(atan2((x^2-2), x^3-2*x), x, sqrt(2), plus);
atan(1/sqrt(2));

limit(atan2(-(x^2-2), x^3-2*x), x, sqrt(2), minus);
%pi-atan(1/sqrt(2));

limit(atan2(-(x^2-2), x^3-2*x), x, sqrt(2), plus);
-atan(1/sqrt(2));

/* #3864 limit of atan2 expression */
limit(atan2(0,1-3^x),x,0);
ind;

limit(floor(x), x, 5, minus);
4;

limit(floor(x), x, 5, plus);
5;

limit(ceiling(x), x, 5, minus);
5;

limit(ceiling(x), x, 5, plus);
6;

limit(round(x), x, 5/2, minus);
2;

limit(round(x), x, 5/2, plus);
3;

limit(floor(sin(x)), x, 0, minus);
-1;

/* #3616 limit with floor problems */
limit(floor(atan(x)),x,1);
0;

limit(ceiling(cos(x)),x,0);
1;

limit(floor(cos(x)),x,0);
0;

limit(ceiling(cos(x)^2),x,0);
1;

/* [ 2914296 ] Limit gets Maxima stuck */
/* caused blow-up in behavior-by-diff with loop up to 5th derivative */
limit( (log(1+x^2)-2+2*cos(x))/((sin(x))^2+2*sqrt(1-x^2)-2),x,0);
5/7;

/* [ 1587235 ] limit(floor(x),x,1) wrong */
limit(floor(x),x,0);
ind;

/* [ 1885377 ] wrong limit evaluation in 5.14.0 */
limit((3/4)^(5*n+1), n, inf);
0;

limit(-%e^x/x, x, inf);
minf;

/* [ 2083561 ] Limit of the Wallis product */
limit((%pi*4^N*N!^2)/(2*2^(2*N)*gamma(N+1/2)*gamma(N+3/2)), N, inf);
%pi/2$

/* wrong limit(log(gamma(x+1))/x,x,0) - ID: 2727078 */
limit(log(gamma(x+1))/x, x, 0);
-%gamma;

/* log has a branch cut on negative real axis */
limit(log(-1+x*%i), x, 0, plus);
%i*%pi;

limit(log(-1+x*%i), x, 0, minus);
-%i*%pi;

limit((log(y+h)-log(y))/h,h,0,plus);
1/y;

/* Bug 3587 */
limit(log(3-sqrt(x)),x,9,minus);
minf;

/* Bug 3589 */
limit((sqrt(x)-2)*log(1-sqrt(x)/2),x,4,minus);
0;

/* Bug 3831 */
limit(log((sqrt(x^2+1))/2),x,1);
-log(2)/2;

/* limit of incomplete gamma */
/* function simplim%gamma_incomplete in gamma.lisp */

/* sin(x^2)/(x^2) improper integral incorrect? - ID: 3397562 */
limit( gamma_incomplete(-1/2, -%i*x^2), x, inf);
0;

/* should be complex infinity */
limit( gamma_incomplete(2, -%i*x), x, inf);
'limit(gamma_incomplete(2,-%i*x),x,inf);

/* Error integrating exp(-x)*sinh(sqrt(x)) with domain: complex - ID: 3529144 */
/* need taylor expansion of gamma_incomplete(1/2, x) at x=0 */
limit(gamma_incomplete(1/2,(1-2*sqrt(x))^2/4)*(1-2*sqrt(x))
                 /(sqrt((1-2*sqrt(x))^2)), x, 1/4, minus),domain:complex;
sqrt(%pi);

limit(gamma_incomplete(1/2,(1-2*sqrt(x))^2/4)*(1-2*sqrt(x))
                 /(sqrt((1-2*sqrt(x))^2)), x, 1/4, plus),domain:complex;
-sqrt(%pi);

/* [ 635606 ] limit(abs(log(x))) internal error, UND */
limit(abs(log(x)), x, 0);
inf;

limit(exp(-x)*(x*sin(x)+cos(x)), x, inf);
0;

/* tex(t[1]) shouldn't change t to true */
tex (t[1], false);
"$$t_{1}$$
"; /* tex output contains embedded newline */

/* tex(x[1]^2) shouldn't get confused by debug info in expression CAR */
(foo : x[1]^2, tex (foo, false));
"$$x_{1}^2$$
"; /* tex output contains embedded newline */

/* [ 2084910 ] limit bugs */
limit((%pi*N^(2*N+1)*2^(2*N))/((2*N-1)^(2*N)*(2*%e*N+%e)), N, inf);
%pi/2;

/* [ 1977992 ] no limit calculation */
limit(abs(sin(x))/sqrt(1-cos(x)), x, 0);
sqrt(2);

/* [ 1973399 ] F(x) := 1/%pi*(atan(x) + %pi/2) */
/* only works with taylor_logexpand:true */
limit( ((1/%pi)*(atan(n/%pi) + %pi/2))^n, n, inf);
%e^-1;

/* limit(x*expintegral_ei(x),x,0) --> Error - ID: 2801821 */
limit(x*expintegral_ei(x), x, 0);
0;

/* #3865 crash from taking limit of factorial(x) + 1 */
limit(factorial(x) + 1, x, 0);
2;

limit(1/(1-factorial(x)), x, 0, minus);
minf;

limit(1/(1-factorial(x)), x, 0, plus);
inf;

/* Limit of the factorial function - 4 problems - ID: 2841504 */
limit(factorial(x),x,-2,plus);
minf;

/* Calculus mistake: wrong answer: limit - ID: 3534858 */
limit((sin(x)-tan(x))/(x*(cos(x)-1)),x,0);
1;

/* #2639 limit asks about internal variable */
limit(tan(x)/sqrt(tan(x)^2+1),x,%pi/2,plus);
-1;

limit(1/psi[1](x), x, inf);
inf;

/* limit of psi[i] - ID: 2843705 */
limit(psi[i](x),x,inf);
'limit(psi[i](x),x,inf);

/* tests for gruntz limit algorithm */
gruntz(exp(x), x, inf);
inf;

gruntz(exp(-x), x, inf);
0;

gruntz( (x + 2^x) / 3^x, x, inf);
0;

gruntz( x^2/(x + 2*x^2), x, inf);
1/2;

gruntz( x/x^log(x), x, inf);
0;

gruntz( (2^x)/(x + exp(x)) , x, 0, plus);
1;

gruntz( (erf(x))/sqrt(1-cos(x)) , x, 0, minus);
-2*sqrt(2)/sqrt(%pi);

gruntz( (erf(x))/sqrt(1-cos(x)) , x, 0, plus);
2*sqrt(2)/sqrt(%pi);

gruntz( x*(x^(1/x)-1)/log(x), x, inf);
1;

gruntz( (x*x^(1/x)-x)/log(x), x, inf);
1;

gruntz(exp(-1/x)/x^6,x,0,plus);
0;

/* limit gives the wrong answer - ID: 3410704 */
limit(sqrt(t^2+4)*(((t+2/t^2)^2+4)^(3/2)-(t+2/t^2)^3-4*(t+2/t^2))
	 /(sqrt((t+2/t^2)^2+4)*((t^2+4)^(3/2)-t^3-4*t)), t, inf);
1;

/* Inaccurate Limit Evaluation - ID: 3276461 */
radcan(limit((-4*x^2-10*x+24)/((4*x+8)^(1/3)+2), x, -4));
66;

limit(-(3*n^2 + 1)*(-1)^n/sqrt(n^5 + 8*n^3 + 8),n,inf);
0;

/*
 * Bug ID: 1315837 limit(?foo)
 * Bug ID: 1119228 limit(1/zeraoa)
 */

limit(?foo);
?foo;
limit(true);
true;
limit(false);
false;
limit(1/zeroa);
inf;
limit(1/zerob);
minf;

/*
 * Bug ID: 1797296 - Crazy results when doing limit of 'diff
 */
limit('diff(x+1,x),x,2);
1;

limit('integrate(x+1,x),x,2);
'integrate(x+1,x);

/* #3767 incorrect limit (radius of convergence) */
limit(diff(exp(n * x), x,n)/n,n,inf);
'limit(diff(exp(n * x), x,n)/n,n,inf);

limit(integrate(f(t),t,0,x),x,0,plus);
0$

limit(integrate(t,t,0,x)/x,x,inf);
inf;

(assume(a>2), limit(integrate(t/log(t),t,2,a)/a,a,inf));
inf;

/* limit(1/inf-1/minf) => 0+0 - ID: 903074 */
limit(1/inf-1/minf);
0;

/*
 1-arg limit: limit(a*inf-inf) => minf - ID: 1385306

 The original fix for this bug sent it to inf, assuming that the two
 different "inf" occurrences were the same. I disagree: inf - inf
 probably shouldn't ever be simplified to zero, but we can avoid it
 here so we do.
*/
limit(a*inf-inf);
und$

/* limit(1 - (-1/2)^inf) --> inf - ID: 2853506 */
limit(1 - (-1/2)^inf);
1-(-1)^inf/2^inf;
/* ideally should be 1 */

/* definition of derivative in terms of limit */
limit((sin(3*(x+h)) - sin(3*(x)))/h, h, 0, plus);
3*cos(3*x);

/* limit incorrect for -x/sqrt(1-x^2) - ID: 2869955 */
limit(-x/sqrt(1-x^2), x, 1, minus);
minf;

/* limit(%i*log(a),a,0) nounform (%i*und problem) - ID: 816797 */
limit(%i*log(x),x,0);
infinity;

/* limit(sqrt(x),x,minf) not fully evaluated - ID: 2901855 */
limit(sqrt(x), x, minf);
infinity;

/* #2847 limits of powers of constants */
limit((5+%i)^n,n,inf);
infinity;

/* limit bug - ID: 3101075 */
limit((2+cos(x))/(x^3*sin(x))-3/x^4,x,0,plus);
1/60;

/* #2527 exponent too big in limit */
limit ((cosh(sqrt(x+1))-cosh(sqrt(x)))^(1/sqrt(x)),x,inf );
%e;

/* #2561 limit(log(x^2),x,-20) gives 2*log(-20) */
limit(log(x^2),x,-20),logexpand:false;
log(400);

/* #2412 Problems with integral (x/(exp(x)+1),x,0,inf) */
limit(-x*log(%e^x+1)-li[2](-%e^x)+x^2/2, x, inf);
%pi^2/6;


/* #4109 Limits of polylogarithms */
limit(li[3](x)/log(-x)^3,x,inf);
-1/6;

/* The initial problem which triggers this bug */
declare(n,integer);
done;
limit ((sin(n*x) - n*x*cos(n*x))/n^2, x, %pi);
-%pi*(-1)^n/n;

/* #2503 Declaring x as an integer changes result of limit from 3 to inf */
limit((2^n+3^n)^(1/n), n,inf);
3;

/* #2624 Erroneous limit result */
(assume(n>2), limit(x-x*(1-1/x)^n, x, inf));
n;

(forget(n>2),0);
0;

/* Bug ID: 593351 - limit/sin(inf)etc. should give 0, not IND
 */
limit(cos(1/x)*sin(x)-sin(x),x,inf);
0;
limit(cos(1/x)*sin(x)-sin(x)+a,x,inf);
a;

/* Bug ID: 1376392 - limit(x/(2+sin(1/x)), x, 0); wrong result
 */
limit(x/(2+sin(1/x)),x,0);
0;

/* #3680 limit(x/sin(1/x),x,0); wrong */
limit(x/sin(1/x), x, 0, plus);
und;

/* Bug ID: 1106912 - limit(x/sin(x)^2,x,inf)
   I think the limit is not defined because the func is not defined
   for all x > any constant.
 */
limit(x/sin(x)^2,x,inf);
und;

/* Bug ID: #3459 Wrong limit calculation */
limit(x / (x+2^x+cos(x)),x,-inf);
1;

/* #Bug ID: #3984 limit for und + something yields something instead of und */
limit(x*sin(x) + erf(x), x, inf);
und;

/* Bug ID: 811522 - redundant question in limit
 * b is assumed to be zero. Maxima now can deduce from the database
 * that b-2 is an even number.
 */
(assume(equal(b,0),notequal(x,0)),0);
0$
limit(r^(b-2)*(x-r)^2,r,0);
inf$
(forget(equal(b,0)),notequal(x,0),0);
0$

/* Bug ID: 221642 limit needs %piargs to be true
 * The implementation of simp-%atan and simpatan2 has been revised.
 * We get more limits independent of the value of %piargs.
 */
%piargs:false;
false;
limit(atan2(0,y),y,0,plus);
atan(0);
limit(atan2(0,y),y,0,minus);
%pi;
limit(atan2(x,0),x,0,plus);
%pi/2;
limit(atan2(x,0),x,0,minus);
-%pi/2;
reset(%piargs);
[%piargs];

/* Bug ID: 3002971 - limit fails where rat+subst works
 */
limit(min(x,x+2,sin(x)/x),x,0);
0;
limit(max(x,x+2,sin(x)/x),x,0);
2;

/* Bug ID: 1969790 - limits and subscripts
 */
limit(mu[inf],x,inf);
mu[inf];

/*
 * Bug 3509430: limit of tanh(x) at 0 makes no sense
 */
limit(tanh(x), x, 0);
0;

/* bug 2535: stack exhausted when computing limit(log(..)) */

limit(log(-1/3125*((-1/2*sqrt(5) + 1/2)^n - (1/2*sqrt(5) +
1/2)^n)^9*sqrt(5))/log(-1/5*((-1/2*sqrt(5) + 1/2)^(8*n) - (1/2*sqrt(5) +
1/2)^(8*n))*((-1/2*sqrt(5) + 1/2)^n - (1/2*sqrt(5) + 1/2)^n) -
1/5*((-1/2*sqrt(5) + 1/2)^(9*n) - (1/2*sqrt(5) +
1/2)^(9*n))*sqrt(5)),n,inf);
1;

/* #2675 maxima will not do the simplest of definite integrals 
   and will not factor otherwise */
limit(x^2*exp(-%i*x - x), x, inf);
0;

/* bug #2621 gamma limit error */

limit(gamma(x+1/2)/(sqrt(x)*gamma(x)), x, inf);
1;

/* Triggered by #2849. This result isn't great, but it's better than
   an error. A more useful result would be und. */
limit (ind * inf);
ind * inf $

limit((a*exp(a*x)*sin(b*x))/(b^2+a^2)-(b*exp(a*x)*cos(b*x))/(b^2+a^2), x, 0, plus);
-(b/(a^2 + b^2));

/* Bug #2898: limit of continuous --> und */

limit(log(x)^2+2*log(x)+q/2+1,x,1);
q/2+1$

limit(log(x)^2+2*%gamma*log(x)-%pi^2/6+%gamma^2,x,1);
%gamma^2-%pi^2/6$

/* #2972 Wrong limits involving logs */
limit( 27^(log(n)/log(3))/n^3, n, inf);
1;

limit( 27^(log(n)/log(3)+1)/n^3, n, inf);
27;

limit( ((27^(log(n)/log(3)+1)-1)/26+n-log(n)/log(3)-1)/n^3,n,inf);
27/26;

/* examples from mailing list 2014-10-10: "Re: bug in limit code" */

(newcontext (), 
 kill (beta, hbar, omega, delta, n),
 assume (beta > 0, hbar > 0, omega > 0, delta > 0, 2*n - 1 > 0),
 0);
0;

limit (%e^(beta*hbar*omega-beta*(hbar*(2*n+1)*omega+delta))
 /(1/(1-%e^-(beta*hbar*omega))^2
 +(%e^-(beta*delta)-1)/(1-%e^-(2*beta*hbar*omega))), beta, inf);
0;

(kill (h, d, z),
 assume (h > 0, d > 0, z > 0, 2*h*z > d),
 0);
0;

limit ((%e^-(b*d)-1)/(1-%e^-(2*b*h*z)), b, inf);
-1;

(kill (a), assume (a < 0), 0);
0;

limit (exp (b*a), b, inf);
0;

limit((exp(a*x)-1)/(exp(a*x)+1),x,inf) ;
-1;

(forget (a < 0), assume (a > 0), 0);
0;

limit((exp(a*x)-1)/(exp(a*x)+1),x,inf) ;
1;

(forget (a > 0), assume (equal (a, 0)), 0);
0;

limit((exp(a*x)-1)/(exp(a*x)+1),x,inf) ;
0;

(forget (equal (a, 0)), assume (a > 0), 0);
0;

integrate(%e^(-a*r)*sin(k*r),r,0,inf);
k/(k^2+a^2);

limit (a*x, x, inf);
inf;

(forget (a > 0), assume (a < 0), limit (a*x, x, inf));
minf;

(forget (a < 0), assume (equal (a, 0)), limit (a*x, x, inf));
0;

killcontext (context);
done;

/* SF bug #3104: "limit(log(1 - exp(x)), x, 0, plus), numer => stack overflow" */

limit(log(1 - exp(x)), x, 0, plus);
infinity;

limit(log(1 - exp(x)), x, 0, plus), numer;
infinity;

limit(log(1 + exp(x)), x, 0, plus);
log(2);

limit(log(1 + exp(x)), x, 0, plus), numer;
0.6931471805599453;

/* inspired by this example from #3103; for the present purpose,
 * it's not too important to get these specific results,
 * only that numer doesn't cause an error here.
 */

integrate(x^3/(exp(x)-1),x,0,inf);
'limit(6*li[4](%e^x)-6*x*li[3](%e^x)+3*x^2*li[2](%e^x)+x^3*log(1-%e^x)-x^4/4,
       x,inf,minus) -%pi^4/15$

integrate(x^3/(exp(x)-1),x,0,inf), numer;
'limit(6.0*li[4](%e^x)-6.0*x*li[3](%e^x)+3.0*x^2*li[2](%e^x)
                      +1.0*x^3*log(1-%e^x)-0.25*x^4,x,inf,minus)
 -6.49393940226683$

/* #3142 limit((x^(1/x) - 1)*sqrt(x), x, inf) => inf */
limit((x^(1/x) - 1)*sqrt(x), x, inf);
0;

/* #3143 limit((x^(1/x) - 1)*sqrt(x), x, 0, minus) => inf */
/* should really be '$infinity */
limit((x^(1/x) - 1)*sqrt(x), x, 0, minus);
'limit((x^(1/x) - 1)*sqrt(x), x, 0, minus);

/* SF bug #3185: "Error in sum with non-false modulus" */

block([modulus:7], sum(i^-2,i,1,inf));
'sum(i^-2,i,1,inf);

block([modulus:7], limit(inf));
inf;

/* SF bug #3235: "ECL lisp arithmetic error in definite integration with large limits"
 * the bug is actually in ECL (https://gitlab.com/embeddable-common-lisp/ecl/issues/299);
 * here we'll test a work around.
 */

block ([actual, expected],
  actual : limit(x*exp(x)*log(exp(x)+1),x,-1000,plus),
  expected : -1000*%e^-1000*log(%e^-1000*(%e^1000+1)),
  if ev (equal (actual, expected), logexpand='super) then true else [actual, expected]);
true;

/* accommodate different equivalent forms via 'equal' */
block ([actual, expected],
  actual : integrate((x^2)*exp(x) / (1 + exp(x))^2,x,-1000,1000),
  expected : (-(2000*%e^1000*log(%e^-1000*(%e^1000+1)))/(%e^1000+1))
  -(2000*log(%e^-1000*(%e^1000+1)))/(%e^1000+1)
   -((2000*%e^1000+2000)*log(%e^1000+1)
    +(2*%e^1000+2)*li[2](-%e^1000)-1000000*%e^1000)
     /(%e^1000+1)+(2*%e^1000*li[2](-%e^-1000))/(%e^1000+1)
     +(2*li[2](-%e^-1000))/(%e^1000+1)-1000000/(%e^1000+1),
  if ev (equal (actual, expected), logexpand='super) then true else [actual, expected]);
true;

/* SF bug #3244: "error trying to promote float infinity to bigfloat in sign comparison"
 * same as test under #3235 but ensure that bigfloat assume is present to trigger bug
 */

block ([actual, expected, ctxt:newcontext()],
  assume (xfoo > 200b0),
  actual : limit(xfoo*exp(xfoo)*log(exp(xfoo)+1),xfoo,-1000,plus),
  expected : -1000*%e^-1000*log(%e^-1000*(%e^1000+1)),
  killcontext (ctxt),
  if ev (equal (actual, expected), logexpand='super) then true else [actual, expected]);
true;

/* SF bug #3826: "limit returns temp variable expression" */

(kill (q, a, x),
 ctxt: newcontext (),
 assume (q > 0),
 limit(x^q/(a*x^q- 1),x,inf));
'limit(x^q/(a*x^q- 1),x,inf);

tlimit(x^q/(a*x^q- 1),x,inf);
'limit(x^q/(a*x^q- 1),x,inf);

(assume (a > 0),
 declare (q, integer),
 limit(x^q/(a*x^q- 1),x,inf));
1/a;

(remove (q, integer),
 declare (q, noninteger),
 limit(x^q/(a*x^q- 1),x,inf));
1/a;

/*
 * limit(li[3](sin(x)), x, %pi/2) was returning a noun form.
 */
makelist(subst(n=k, limit(li[n](sin(x)), x, %pi/2)), k, 2, 5);
[zeta(2), zeta(3), zeta(4), zeta(5)];

limit(li[3](sin(x)+x-%pi/2), x, %pi/2);
zeta(3);

(remove (q, noninteger),
 killcontext (ctxt));
done;

/* Bug #3926: Various limits give UND where they should give IND */

limit(unit_step(x),x,0);
ind;

limit(abs(x)/x,x,0);
ind;

limit(x/abs(x),x,0);
ind;

limit(exp(1/x),x,0);
und;

limit(exp(1/x)*sin(1/x),x,0);
und;

limit(exp(-1/x)*sin(1/x),x,0);
und;

/* Bug #3071: limit of expressions with signum not very powerful */

limit(signum(x)^a,x,0); /* It would be better if this asked about a */
ind;

limit(signum(x)*x/sin(x),x,0);
ind;