File: rtest_plot.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (435 lines) | stat: -rw-r--r-- 14,773 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* execute this script 
 *
 * (1) wait for user between examples:
 *  demo ("tests/rtest_plot.mac");
 *
 * (2) or noninteractively:
 *  batch ("tests/rtest_plot.mac");
 *
 * Maxima waits for the user to close the Openmath window
 * before proceeding, but otherwise it just blazes through.
 */

/* Examples copied from plot2d documentation */

"Regression for f0 issue"$
plot2d(x^2,[x,-1,1],[yx_ratio,1]);
plot2d(x^2,[x,-1,1],[xy_scale,1,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[zmin,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[xtics,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[ytics,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[ztics,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[xtics,1,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[ytics,1,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[ztics,1,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[color_bar_tics,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[label,"tako",1,1]);
plot3d(x^2,[x,-1,1],[y,-1,1],[label,["tako",1,1],["surume",1,1],["ika",1,1]]);

"Plots of common functions." $

plot2d (sin(x), [x, -5, 5])$
plot2d (sec(x), [x, -2, 2], [y, -20, 20], [nticks, 200])$

"Plotting functions by name." $

F(x) := x^2 $
:lisp (defun |$g| (x) (m* x x x))
H(x) := if x < 0 then x^4 - 1 else 1 - x^5 $
plot2d (F, [u, -1, 1])$
plot2d ([F, G, H], [u, -1, 1], [y, -1.5, 1.5])$
kill(F,H,G) $

"We can plot a circle using a parametric plot ..." $

plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pi]], [nticks,80], [x, -4/3, 4/3])$

"If we repeat that plot with only 8 points ..." $
"As parametric plot uses adaptive method, nticks=4 and adapt_depth=1 is for 8 point drawing" $

plot2d ([parametric, cos(t), sin(t), [t, -%pi*2, %pi*2]], [nticks, 4], [adapt_depth,1], [x, -2, 2], [y, -1.5, 1.5])$

"Combination of an ordinary plot ..." $

plot2d ([x^3+2, [parametric, cos(t), sin(t), [t, -5, 5]]], [x, -3, 3],  [nticks, 80])$

"Example of a logarithmic plot:" $

plot2d (exp(3*s), [s, -2, 2], [logy])$

"To show some examples of discrete plots, ..." $

xx:[10, 20, 30, 40, 50]$
yy:[.6, .9, 1.1, 1.3, 1.4]$
xy:[[10,.6], [20,.9], [30,1.1], [40,1.3], [50,1.4]]$
plot2d([discrete,xx,yy])$

"We will now show the plot with only points, ..." $

plot2d([discrete, xy], [style, points])$

"The plot of the data points can be shown together with ..." $

plot2d([[discrete,xy], 2*%pi*sqrt(l/980)], [l,0,50],
 [style, [points,5,2,6], [lines,1,1]], [legend,"experiment","theory"],
 [xlabel,"pendulum's length (cm)"], [ylabel,"period (s)"])$

"To save a plot ..." $

plot2d (sin(x), [x, 0, 2*%pi], [ps_file, concat (maxima_tempdir, "/sin.eps")])$

"The next example uses the y option ..." $

plot2d ([gamma(x), 1/gamma(x)], [x, -4.5, 5], [y, -10, 10], [gnuplot_preamble, "set key bottom"])$

"We can also use a `gnuplot_preamble' to produce fancy x-axis labels." $

my_preamble: "set xtics ('-2pi' -6.283, \
'-3pi/2' -4.712, '-pi' -3.1415, '-pi/2' -1.5708, '0' 0, \
'pi/2' 1.5708, 'pi' 3.1415,'3pi/2' 4.712, '2pi' 6.283)"$
plot2d([cos(x), sin(x), tan(x), cot(x)], [x, -2*%pi, 2.1*%pi], [y, -2, 2],
 [axes, x], [gnuplot_preamble, my_preamble]);

"... fancy x-axis labels, and produces PostScript output ..." $

my_preamble: "set xtics ('-2{/Symbol p}' \
-6.283, '-3{/Symbol p}/2' -4.712, '-{/Symbol p}' -3.1415, \
'-{/Symbol p}/2' -1.5708, '0' 0,'{/Symbol p}/2' 1.5708, \
'{/Symbol p}' 3.1415,'3{/Symbol p}/2' 4.712, '2{/Symbol p}' \
6.283)"$
plot2d ([cos(x), sin(x), tan(x)], [x, -2*%pi, 2*%pi],
 [y, -2, 2], [gnuplot_preamble, my_preamble], [ps_file, concat (maxima_tempdir, "/trig.eps")]);

/* Examples copied from plot3d documentation */

"Displays a plot of one or three expressions as functions of two variables." $

plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2]);

"The same graph can be plotted using xmaxima ..." $

plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2], [plot_format, xmaxima]);

"An example of the third pattern of arguments is" $

plot3d ([cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)),
 y*sin(x/2)], [x, -%pi, %pi], [y, -1, 1], ['grid, 50, 15]);

"This example shows a plot of the real part of `z^1/3' ..." $

plot3d (r^.33*cos(th/3), [r, 0, 1], [th, 0, 6*%pi], ['grid, 12, 80],
 ['transform_xy, polar_to_xy], [box, false],[legend,false]);

"Other examples are the Klein bottle:" $

expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0) - 10.0$
expr_2: -5*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)$
expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))$
plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pi], [y, -%pi, %pi], ['grid, 40, 40]);

"and a torus:" $

expr_1: cos(y)*(10.0+6*cos(x))$
expr_2: sin(y)*(10.0+6*cos(x))$
expr_3: -6*sin(x)$
plot3d ([expr_1, expr_2, expr_3], [x, 0, 2*%pi], [y, 0, 2*%pi], ['grid, 40, 40]);

"Sometimes it is necessary to define a function to plot the expression." $

kill(f) $
M: matrix([1, 2, 3, 4], [1, 2, 3, 2], [1, 2, 3, 4], [1, 2, 3, 3])$
f(x, y) := float (M [?round(x), ?round(y)])$
plot3d (f, [x, 1, 4], [y, 1, 4], ['grid, 4, 4])$
kill(M,f)$

"Here is a three-dimensional plot using the gnuplot pm3d terminal." $

plot3d (atan (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4], [grid, 50, 50], [gnuplot_pm3d, true])$

"And a three-dimensional plot without a mesh and with contours ..." $

my_preamble: "set pm3d at s;unset surface;set contour;\
set cntrparam levels 20;unset key"$
plot3d(atan(-x^2 + y^3/4), [x, -4, 4], [y, -4, 4], [grid, 50, 50],
 [gnuplot_pm3d, true], [gnuplot_preamble, my_preamble])$

"Finally, a plot where the z-axis is represented by color only." $

plot3d (cos (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4],
 [gnuplot_preamble, "set view map; unset surface"], [gnuplot_pm3d, true], [grid, 150, 150])$

/* Examples copied from plot_options documentation */

"Option: `plot_realpart'" $

plot2d (log(x), [x, -5, 5], [plot_realpart, false]);
plot2d (log(x), [x, -5, 5], [plot_realpart, true]);

/* further *plot-realpart* examples from mailing list 2010-08-13 "plot3d: function not defined everywhere in the plotting range" */

plot2d (log(x), [x, -3, 3]);
plot3d (log(x), [x, -3, 3], [y, -3, 3]);

/* (other options listed under plot_options do not have plot2d or plot3d examples) */

/* Examples adapted from demo/demo.dem
 * (others are duplicates or not different enough)
 */

"two dimensional parametric plot" $

plot2d ([parametric, t*sin(t), t*cos(t), [t, 0, 80]], [nticks, 1000]);

"three dimensional cartesian plot of a bessel function" $

plot3d (bessel_j (0, sqrt(x^2 + y^2)), [x, -12, 12], [y, -12, 12]);

"three dimensional polar plot of the same bessel function" $

plot3d (bessel_j (0, r), [th, 0, 2*%pi], [r, 0, 12], ['transform_xy, polar_to_xy]);

"three dimensional plot of x*exp(-x^2-y^2)" $

plot3d (x*exp(- x^2 - y^2), [x, -2, 2], [y, -2, 2]);

/* Example adapted from demo/plots.mac
 * (others are duplicates or not different enough)
 */

"Real part of z^1/6" $

plot3d (r^(1/6.0)*cos(th/6), [r, 0, 1], [th, 0, 2*6*%pi], ['grid, 12, 121], ['transform_xy, polar_to_xy]);

/* Examples related to bug reports or other specific topics */

/* SF bug [ 1699445 ] plot2d in very narrow range
 * triggers Gnuplot bug on Windows (line outside bounding box)
 */

"[ 1699445 ] plot2d in very narrow range" $

plot2d (sin(x), [x, 1.57079628, 1.570796326794897]);

"[ 2234113 ] plot2d odd roots of X plots only positive values" $

plot2d (x^(1/3), [x, -5, 5]);

plot2d (u^(1/5), [u, -5, 5]);

"r1.55 src/plot.lisp: ensure that log plots are adequately sampled" $

plot2d (x, [x, 1e-5, 100], [logy]);

plot2d (x, [x, 1e-5, 100], [logx]);

"r1.62 src/plot.lisp: expand the cases recognized by COERCE-FLOAT-FUN" $

:lisp (defun $f (x) (+ (cl:sin x) 0.1))
:lisp (defmspec $h (x) (+ (cl:sin (cadr x)) 0.3))
(g(x) := sin(x) + 0.2,
 i(x) ::= sin(x) + 0.4,
 prefix ("j"),
 "j"(x) := sin(x) + 0.5,
 matchdeclare (x, floatnump),
 tellsimpafter (k(x), sin(x) + 0.6));

plot2d ([f, g, h, i, sin, k], [u, 0, 1]);

/* "j" in list of functions tickles a bug -- quote marks not sanitized
 * work around it by explicit legend spec
 */
plot2d (["+", "j"], [u, 0, 1], [legend, "+", "j"]);

"(not a plot example, maybe it should be moved elsewhere)" $

map (lambda ([f], quad_qags (f, u, 0, 1)), [f, g, h, i, "+", "j", sin, k]);
:lisp (unintern '$f)
:lisp (unintern '$h)

"r1.82 src/plot.lisp: floatify non-float numbers" $

plot2d ([discrete, [1, 2, 3, 4], [1, 1/2, 1/3, 1/4]]);

plot2d ([discrete, [1, 2, 3, 4], [1/%e, 1/%pi, 1/%phi, 1/%gamma]]);

plot2d ([discrete, [1, 2, 3, 4], [1b0, 0.5b0, 0.33b0, 0.25b0]]);

"SF bug [ 2672976 ] wxMaxima 0.8.1: set logscale x gives error";

plot2d (sin(x), [x, 0, 1], [logx, true]);

plot2d (sin(u), [u, 0, 1], [logx, true]);

plot2d (sin(u), [u, 0, 1], [logx, true], [y, 0, 1], [logy, true]);

"verify that nested numerical integral is handled correctly";

plot2d (w^2 * 'quad_qags (1/(s - w), s, 1, 5) [1], [w, -5, -1], [adapt_depth, 1]);

"another nested numerical integral";

(kill (W, R, A),
 W(t) := 95*sqrt(t)*sin(t/6)^2,
 R(t) := 275*sin(t/3)^2,
 A(t) := 1200 + quad_qags (W(x) - R(x), x, 0, t) [1],
 plot2d (A(t), [t, 0, 18], [adapt_depth, 1]));

"plotting realpart and imagpart";

plot3d (realpart (asin (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);

plot3d (imagpart (asin (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);

plot3d (realpart (exp (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);

plot3d (imagpart (exp (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);

"messages about non-numeric values and clipped values";

plot2d (sqrt (x), [x, 0, 1]); /* no message */

plot2d (sqrt (x), [x, -1, 1]); /* some non-numeric */

plot2d (sqrt (x), [x, 0, 1], [y, 0, 1/2]); /* some clipped */

plot2d (sqrt (x), [x, -1, 1], [y, 0, 1/2]); /* some non-numeric, some clipped */

errcatch(plot2d (sqrt (x), [x, -2, -1])); /* all non-numeric */

errcatch(plot2d (sqrt (x), [x, 0, 1], [y, -2, -1])); /* all clipped */

errcatch(plot2d (sqrt (x), [x, -1, 1], [y, -2, -1])); /* all non-numeric or clipped */

"coping with overflow in intermediate results";

/* from the mailing list "plot numerical question" 2009-03-11 */

(r4(s) := block ([s : bfloat(s)], s!/(((s/4)!)^4 * 4^s)),
 plot2d (r4, [s, 200, 300], [adapt_depth, 1], [nticks, 5]));

plot2d ('r4(s), [s, 200, 300], [adapt_depth, 1], [nticks, 5]);

/* from mailing list 2009-02-18
 * "Re: [Maxima] I want to tell maxima (-1)^0.33333333333333=-1, what should i do?"
 */

foo29(x):=(sqrt(-16*x^4-16*x^3+20*x^2+12*x+23)/(6*sqrt(3))+(16*x^3-12*x^2-6*x-25)/54)^(1/3)$

plot2d (foo29 (u), [u, -1, 0]);

plot2d (foo29, [u, -1, 0]);

compile (foo29);

plot2d (foo29, [u, -1, 0]);

/* bug report "Wrong result given by coerce-float-fun" ID: 2880115 */

(kill(f),
 f(k) := integrate (exp(%i*k*x)*sin(x)/x, x, minf, inf),
 plot2d (f, [x, -3, 3], [adapt_depth, 1], [nticks, 5]));

(translate(f),
 plot2d (f, [x, -3, 3], [adapt_depth, 1], [nticks, 5]));

/* bug report "xlabel and ylabel don't change plot3d axis labels" - ID: 3020589 */

(Bxt(x, r) := x^2 + r^2,
 [R, L] : [1, 1],
 plot3d(Bxt(x,r),[x,0,L],[r,0,R],[xlabel,"x [m]"],[ylabel,"r [m]"],[zlabel,"Bx [T]"],[legend,"Axial field"]));

/* same but now using default axis labels */
plot3d(Bxt(x,r),[x,0,L],[r,0,R],[legend,"Axial field"]);

/* from the mailing list 2011-05-26:
 * "Wrong usage" error message when trying to plot with plot3d or contour_plot
 * should expect this example to provoke an advisory message and make a plot
 */

block (local (fn, Fn, pw, fbn, fbnxcy, loww),
 fn(x):=1/sqrt(2*%pi)*exp((-x^2)/2),
 Fn(x):=integrate(fn(t),t,-inf,x),
 pw(r1,r2,s1,s2):=1-Fn((r2-r1)/sqrt(s1^2+s2^2)),
 fbn(x,y,r):=1/(2*%pi*sqrt(1-r^2))*exp((-(x^2-2*r*x*y+y^2))/(2*(1-r^2))),
 fbnxcy(x,y,r) := fbn(x,y,r) / fn(y),
 loww(rs2, ro, r, s1, s2) := quad_qagi(fbnxcy(rs1, rs2, r)*pw(rs1, ro, s1, s2), rs1, minf, inf),
 plot3d( 'loww(rs2, 0, r, 1, 1)[1] , [rs2, -1.5, 2.5], [r, 0.1, 0.9] ));

/* simpler version of the preceding one */

block (local (foo),
 foo(x, y) := if numberp(x) and numberp(y) then [x^2 - y^2] else funmake (foo, [x, y]),
 plot3d (foo (a, b)[1], [a, -1, 1], [b, -1, 1]));

/* helix -- see mailing list 2012-01-22 "3D curve parametric plot" */

plot3d([sin(t), cos(t), t], [t,-5,5], [y,-5,5], [grid,100,2], [gnuplot_pm3d,false])$

/* plot2d/plot3d with subscripted variable */

(kill (x, a), plot2d (a[x]^3, [a[x], -1, 1]));

plot3d (a[x]^2 - x[a]^3, [a[x], -1, 1], [x[a], -1, 1]);

/* from wxMaxima forum 2013-02-16: "plot2d: expression evaluates to non-numeric value everywhere in plotting range"
 * https://sourceforge.net/p/wxmaxima/discussion/435775/thread/d89ea980/
 */

F(omega) := abs((%i * omega + 2E4)^2);
plot2d(F(omega), [omega, 0.01, 2E5]);

/* SF bug 3776: "plot3d(\"*\",...) gives internal error" */

(kill(mul, x, y), mul(a,b):=a*b)$
/* next two should be the same */
plot3d(mul,[x,0,1],[y,0,1]);
plot3d("*",[x,0,1],[y,0,1]);

/* SF bug #3807: "plot2d heuristic to detect unbound variables excludes some valid cases" */

plot2d (quad_qags (sin(u), u, 0, x)[1], [x, 0, 1]);
plot2d (find_root (sin(u) - x, u, 0, %pi/2), [x, 0, 1]);
plot2d(sum(w, w, 1, abs(x)), [x, 1, 10]);

/* Bug #3881: plot2d not ignoring errors within functions */

plot2d (gamma (x), [x, -1, 1]);
plot2d (lambda ([x], gamma (x)), [x, -1, 1]);

/* SF bug #1055: "parameter in parametric plot must be named t" */

kill (foo); 
plot2d ([parametric, sin(foo), cos(foo), [foo, 0, %pi]]);

/* SF bug #3958: "plot2d with multiple discrete plots fails" */
/* SF bug #3959: "plot2d + Gnuplot 4 with `plot title noenhanced`" */

plot2d ([[discrete, [1, 2, 3, 4], [1, 1/2, 1/3, 1/4]], [discrete, [1, 2, 3, 4], [1/%e, 1/%pi, 1/%phi, 1/%gamma]]], [legend, "foo_1", "foo_2"], [gnuplot_strings, false]);

plot2d ([[discrete, [1, 2, 3, 4], [1, 1/2, 1/3, 1/4]], [discrete, [1, 2, 3, 4], [1/%e, 1/%pi, 1/%phi, 1/%gamma]]], [legend, "baz_1", "baz_2"], [gnuplot_strings, true]);

/* gnuplot_svg_background */

get_plot_option (gnuplot_svg_background);

plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-white.svg"]);
plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-no-bg-1.svg"], nognuplot_svg_background);
plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-gray.svg"], [gnuplot_svg_background, "gray"]);
plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-ffeedd-1.svg"], [gnuplot_svg_background, "#FFEEDD"]);

get_plot_option (gnuplot_svg_background);
set_plot_option ([gnuplot_svg_background, "yellow"]);

plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-yellow.svg"]);
plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-no-bg-2.svg"], nognuplot_svg_background);
plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-ffeedd-2.svg"], [gnuplot_svg_background, "#FFEEDD"]);

get_plot_option (gnuplot_svg_background);
set_plot_option ([gnuplot_svg_background, false]);

plot2d ([discrete, [1, 2, 3], [4, 5, 6]], [svg_file, "./tmp-svg-bg-no-bg-3.svg"]);

get_plot_option (gnuplot_svg_background);

"FINIS" $