File: test_algebra.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (172 lines) | stat: -rw-r--r-- 5,241 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/Algebra/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ---------- Algebra ---------- */
/* One would think that the simplification 2 2^n => 2^(n + 1) would happen
   automatically or at least easily ... */
2*2^n;
2^(n+1)$

subst(a = 2, subst(2 = a, 2*2^n));
2^(n+1)$

/* And how about 4 2^n => 2^(n + 2)?   [Richard Fateman] */
4*2^n;
2^(n + 2)$

(declare(n,integer),0);
0$

map('factor, 2^(n + 2));
2^n$

(-1)^(n*(n + 1));
1$

(remove(n, integer),0)
0$

factor(6*x - 10);
2*(3*x - 5)$

/* Univariate gcd: gcd(p1, p2) => 1, gcd(p1 q, p2 q) => q   [Richard Liska] */
(p1: 64*x^34 - 21*x^47 - 126*x^8 - 46*x^5 - 16*x^60 - 81,
p2: 72*x^60 - 25*x^25 - 19*x^23 - 22*x^39 - 83*x^52 + 54*x^10 + 81,
q: 34*x^19 - 25*x^16 + 70*x^7 + 20*x^3 - 91*x - 86,
gcd(p1, p2));
1$

gcd(expand(p1*q), expand(p2*q)) - q;
0$

resultant(expand(p1*q), expand(p2*q), x);
0$;

/* How about factorization? => p1 * p2 */
factor(expand(p1 * p2));
p1*p2$

(remvalue(p1, p2, q),0);
0$

/* Multivariate gcd: gcd(p1, p2) => 1, gcd(p1 q, p2 q) => q */
(p1: 24*x*y^19*z^8 - 47*x^17*y^5*z^8 + 6*x^15*y^9*z^2 - 3*x^22 + 5,
p2: 34*x^5*y^8*z^13 + 20*x^7*y^7*z^7 + 12*x^9*y^16*z^4 + 80*y^14*z,
q: 11*x^12*y^7*z^13 - 23*x^2*y^8*z^10 + 47*x^17*y^5*z^8,
gcd(p1, p2));
1$

gcd(expand(p1*q), expand(p2*q)) - q;
q;

/* How about factorization? => p1 * p2 */
factor(expand(p1 * p2));
p1*p2$

(remvalue(p1, p2, q),0);
0$

/* => x^n for n > 0   [Chris Hurlburt] */
gcd(2*x^(n + 4) - x^(n + 2), 4*x^(n + 1) + 3*x^n);
x^n$

/* Resultants.  If the resultant of two polynomials is zero, this implies they
   have a common factor.  See Keith O. Geddes, Stephen R. Czapor and George
   Labahn, _Algorithms for Computer Algebra_, Kluwer Academic Publishers, 1992,
   p. 286 => 0 */
resultant(3*x^4 + 3*x^3 + x^2 - x - 2, x^3 - 3*x^2 + x + 5, x);
0$

/* Numbers are nice, but symbols allow for variability---try some high school
   algebra: rational simplification => (x - 2)/(x + 2) */
((x^2 - 4)/(x^2 + 4*x + 4),
ratsimp(%));
0$

/* This example requires more sophistication => e^(x/2) - 1 */
radcan([(%e^x - 1)/(%e^(x/2) + 1), (exp(x) - 1)/(exp(x/2) + 1)]);
0$

/* Expand and factor polynomials */
(x + 1)^20;
expand(%);
diff(%, x);
factor(%);
/* Completely factor this polynomial, then try to multiply it back together! */
solve(x^3 + x^2 - 7 = 0, x);
apply("*", map(lambda([e], lhs(e) - rhs(e)), %));
ratsimp(expand(%));
x^100 - 1;
factor(%);
/* Factorization over the complex rationals
   => (2 x + 3 i) (2 x - 3 i) (x + 1 + 4 i) (x + 1 - 4 i) */
gfactor(4*x^4 + 8*x^3 + 77*x^2 + 18*x + 153);
/* Algebraic extensions */
algebraic: true$
tellrat(sqrt2^2 - 2);
/* => sqrt2 + 1 */
rat(1/(sqrt2 - 1));
/* => (x^2 - 2 x - 3)/(x - sqrt2) = (x + 1) (x - 3)/(x - sqrt2)
      [Richard Liska] */
(x^3 + (sqrt2 - 2)*x^2 - (2*sqrt2 + 3)*x - 3*sqrt2)/(x^2 - 2);
rat(%);
factor(%);
factor(%, sqrt2^2 - 2);
untellrat(sqrt2)$
/* Multiple algebraic extensions */
tellrat(sqrt3^2 - 3, cbrt2^3 - 2);
/* => 2 cbrt2 + 8 sqrt3 + 18 cbrt2^2 + 12 cbrt2 sqrt3 + 9 */
rat((cbrt2 + sqrt3)^4);
untellrat(sqrt3, cbrt2)$
algebraic: false$
/* Factor polynomials over finite fields and field extensions */
p: x^4 - 3*x^2 + 1;
factor(p);
/* => (x - 2)^2 (x + 2)^2  mod  5 */
ev(factor(p), modulus:5);
expand(%);
/* => (x^2 + x + 1) (x^9 - x^8 + x^6 - x^5 + x^3 - x^2 + 1)  mod  65537
      [Paul Zimmermann] */
ev(factor(x^11 + x + 1), modulus:65537);
/* => (x - phi) (x + phi) (x - phi + 1) (x + phi - 1)
   where phi^2 - phi - 1 = 0 or phi = (1 +- sqrt(5))/2 */
factor(p, phi^2 - phi - 1);
remvalue(p)$
expand((x - 2*y^2 + 3*z^3)^20)$
factor(%);
expand((sin(x) - 2*cos(y)^2 + 3*tan(z)^3)^20)$
factor(%);
/* expand[(1 - c^2)^5 (1 - s^2)^5 (c^2 + s^2)^10] => c^10 s^10 when
   c^2 + s^2 = 1   [modification of a problem due to Richard Liska] */
expand((1 - c^2)^5 * (1 - s^2)^5 * (c^2 + s^2)^10)$
grobner([%, c^2 + s^2 - 1]);
factor(%);
/* => (x + y) (x - y)  mod  3 */
ev(factor(4*x^2 - 21*x*y + 20*y^2), modulus:3);
/* => 1/4 (x + y) (2 x +  y [-1 + i sqrt(3)]) (2 x + y [-1 - i sqrt(3)]) */
factor(x^3 + y^3, isqrt3^2 + 3);
/* Partial fraction decomposition => 3/(x + 2) - 2/(x + 1) + 2/(x + 1)^2 */
(x^2 + 2*x + 3)/(x^3 + 4*x^2 + 5*x + 2);
partfrac(%, x);
/* Noncommutative algebra: note that (A B C)^(-1) = C^(-1) B^(-1) A^(-1)
   => A B C A C B - C^(-1) B^(-1) C B */
(A.B.C - (A.B.C)^^(-1)) . A.C.B;
expand(%);
/* Jacobi's identity: [A, B, C] + [B, C, A] + [C, A, B] = 0 where [A, B, C] =
   [A, [B, C]] and [A, B] = A B - B A is the commutator of A and B */
comm2(A, B):= A . B - B . A$
comm3(A, B, C):= comm2(A, comm2(B, C))$
comm2(A, B);
comm3(A, B, C) + comm3(B, C, A) + comm3(C, A, B);
expand(%);
remfunction(comm2, comm3)$