File: test_limits.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (65 lines) | stat: -rw-r--r-- 2,489 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/Limits/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Limits ---------- */
/* Start with a famous example => e */
'limit((1 + 1/n)^n, n, inf);
ev(%, limit);
/* => 1/2 */
limit((1 - cos(x))/x^2, x, 0);
/* See Dominik Gruntz, _On Computing Limits in a Symbolic Manipulation System_,
   Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich,
   Switzerland, 1996. => 5 */
limit((3^x + 5^x)^(1/x), x, inf);
/* => 1 */
limit(log(x)/(log(x) + sin(x)), x, inf);
/* => - e^2   [Gruntz] */
'limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x^2/(x + 1)))) - exp(x))/x, x, inf);
ev(%, limit);
/* => 1/3   [Gruntz] */
'limit(x*log(x)*log(x*exp(x) - x^2)^2/log(log(x^2 + 2*exp(exp(3*x^3*log(x))))),
       x, inf);
ev(%, limit);
/* => 1/e   [Knopp, p. 73] */
limit(1/n * n!^(1/n), n, inf);
/* Rewrite the above problem slightly => 1/e */
limit(1/n * gamma(n + 1)^(1/n), n, inf);
/* => 1   [Gradshteyn and Ryzhik 8.328(2)] */
assume(a > 0)$
limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, inf);
forget(a > 0)$
assume(a < 0)$
limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, inf);
forget(a < 0)$
/* => e^z   [Gradshteyn and Ryzhik 9.121(8)] */
limit(hgfred([1, k], [1], z/k), k, inf);
/* => Euler's_constant   [Gradshteyn and Ryzhik 9.536] */
limit(zeta(x) - 1/(x - 1), x, 1);
/* => gamma(x)   [Knopp, p. 385] */
'limit(n^x/(x * 'product((1 + x/k), k, 1, n)), n, inf);
q: closedform(%);
assume(x > 0)$
ev(q, 'limit);
forget(x > 0)$
remvalue(q)$
/* See Angus E. Taylor and W. Robert Mann, _Advanced Calculus_, Second Edition,
   Xerox College Publishing, 1972, p. 125 => 1 */
limit(x * integrate(exp(-t^2), t, 0, x)/(1 - exp(-x^2)), x, 0);
/* => [-1, 1] */
[limit(x/abs(x), x, 0, minus), limit(x/abs(x), x, 0, plus)];
/* => pi/2   [Richard Q. Chen] */
limit(atan(-log(x)), x, 0, plus);