File: test_numbers.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (98 lines) | stat: -rw-r--r-- 3,408 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/Numbers/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Numbers ---------- */
/* Let's begin by playing with numbers: infinite precision integers
   => 30414 0932017133 7804361260 8166064768 8443776415 6896051200 0000000000
   */
50!;
/* => 2^47 3^22 5^12 7^8 11^4 13^3 17^2 19^2 23^2 29 31 37 41 43 47 */
factor(%);
/* Double factorial => 10!! = 10*8*6*4*2 = 3840, 9!! = 9*7*5*3*1 = 945 */
[10!!, 9!!];
/* ABC base 16 => 2748 base 10 */
ibase: 16$
abc;
ibase: 9+1$
/* 123 base 10 => 234 base 7 */
obase: 7$
123;
obase: 10$
/* 677 base 8 => 1BF base 16 */
obase: 16$
ibase: 8$
677;
ibase: 12$
obase: 10$
/* [log base 8](32768) => 5 */
logb(8, 32768);
/* 5^(-1) mod 7 => 3;   5^(-1) mod 6 => 5 */
modulus: 7$
rat(5^(-1));
modulus: 6$
rat(5^(-1));
modulus: false$
/* Greatest common divisor => 74 */
gcdn([1776, 1554, 5698]);
/* Infinite precision rational numbers => 4861/2520 */
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10;
/* Complete decimal expansion of a rational number => 0.142857 ... */
dfloat(1/7);
/* Multiply two complete decimal expansions and produce an exact result => 2 */
(7/11) * (22/7);
/* This number should immediately simplify to 3^(1/3) */
10/7 * (1 + 29/1000)^(1/3);
/* Simplify an expression with nested square roots => 1 + sqrt(3) */
sqrt(2*sqrt(3) + 4);
denest_sqrts(%);
/* Try a more complicated example (from the Putnam exam) => 3 + sqrt(2) */
sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2)))));
denest_sqrts(%);
/* See D.J. Jeffrey and A.D. Rich, ``The nesting habits of radicals'', draft of
   1998 => sqrt(2) + sqrt(3) + sqrt(5) */
sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15));
denest_sqrts(%);
/* Rationalize the denominator => 5 + 2 sqrt(6) */
(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2));
ratsimp(%), algebraic: true;
rootscontract(%);
/* A factorization of 3 in the integers extended by sqrt(-5) */
sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5));
ratsimp(rootscontract(%));
/* => 3 + sqrt(7)   [Jeffrey and Rich] */
(90 + 34*sqrt(7))^(1/3);
denest_sqrts(%);
/* This is a nontrivial way of writing 12 ! */
((135 + 78*sqrt(3))^(2/3) + 3)*sqrt(3)/(135 + 78*sqrt(3))^(1/3);
ratsimp(%), algebraic: true;
dfloat(%);
/* See David Jeffrey, ``Current Problems in Computer Algebra Systems'', talk
   => 1 + sqrt(2) */
(49 + 21*sqrt(2))^(1/5);
denest_sqrts(%);
/* A nasty example generated by Axiom => [log(sqrt(2) + 1) + sqrt(2)]/3 */
((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17 - 12*sqrt(2))
 + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72);
ratsimp(logcontract(ev(ratsimp(%), algebraic: true)));
dfloat(%);
dfloat((log(sqrt(2) + 1) + sqrt(2))/3);
/* Cardinal numbers => infinity */
2*inf - 3;
limit(%);
/* 2^aleph_0 => aleph_1 */
2^inf;
limit(%);