File: test_numerical_analysis.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (72 lines) | stat: -rw-r--r-- 2,874 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/NumericalAnalysis/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Numerical Analysis ---------- */
/* This number should immediately simplify to 0.0 */
0.0/sqrt(2);
/* This number normally produces an underflow => 3.29683e-434295 */
exp(-1000000.0);
exp(-1000000.0b0);
/* Arbitrary precision floating point numbers */
oldprec: fpprec$
fpprec: 50$
/* This number is nearly an integer:
   26253741 2640768743.9999999999 9925007259 7198185688 ... */
bfloat(exp(sqrt(163)*%pi));
fpprec: oldprec$
remvalue(oldprec)$
/* => [-2, -1] */
[floor(-5/3), ceil(-5/3)];
/* Generate a cubic natural spline s from x = [1, 2, 4, 5] and y = [1, 4, 2, 3]
   and then compute s(3) => 27/8 */
spline_coeff([1, 2, 4, 5], [1, 4, 2, 3], s, 4)$
errcatch(spline_interpolate(3, [1, 2, 4, 5], [1, 4, 2, 3], s, 4));
spline_interpolate(3., [1, 2, 4, 5], [1, 4, 2, 3], s, 4);
/* Translation */
p: sum(a[i]*x^i, i, 1, n);
/* Convert into FORTRAN syntax */
fortran(p)$
gentran(p: eval(p))$
/* Convert into C syntax */
gentranlang: 'c$
gentran(p: eval(p))$
gentranlang: 'fortran$
/* Horner's rule---this is important for numerical algorithms
   => (a[1] + (a[2] + (a[3] + (a[4] + a[5] x) x) x) x) x */
p: sum(a[i]*x^i, i, 1, 5);
p: horner(p, x);
/* Convert the result into FORTRAN syntax
   => p = (a(1) + (a(2) + (a(3) + (a(4) + a(5)*x)*x)*x)*x)*x */
fortran(p)$
gentran(p: eval(p))$
/* Convert the result into C syntax
   => p = (a[1] + (a[2] + (a[3] + (a[4] + a[5]*x)*x)*x)*x)*x ; */
gentranlang: 'c$
gentran(p: eval(p))$
gentranlang: 'fortran$
remvalue(p)$
/* Count the number of (floating point) operations needed to compute an
   expression => {[+, n - 1], [*, (n^2 - n)/2], [f, (n^2 + n)/2]} */
sum(product(f(i, k), i, 1, k), k, 1, n);
count_ops(%);
/* Interval analysis (interval polynomial example):
   ([-4, 2] x + [1, 3])^2 => [-8, 16] x^2 + [-24, 12] x + [1, 9] */
/* Discretize a PDE: for example, forward differencing time (explicit Euler)
   and central differencing x on the heat equation =>
   (f[i, j+1] - f[i, j])/dt = (f[i+1, j] - 2 f[i, j] + f[i-1, j])/dx^2 */
diff(f(x, t), t) = diff(f(x, t), x, 2);
difference_pde(%, f(x, t), x, f, dx, 'central, t, dt, 'exp_euler);