File: test_odes.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (170 lines) | stat: -rw-r--r-- 7,699 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/ODEs/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Ordinary Difference and Differential Equations ---------- */
/* Second order linear recurrence equation: r(n) = (n - 1)^2 + m n */
differenceq(r[n + 2] - 2 * r[n + 1] + r[n] = 2, r[n], [r[0] = 1, r[1] = m]);
/* => r(n) = 3^n - 2^n   [Cohen, p. 67] */
errcatch(differenceq(r[n] = 5*r[n - 1] - 6*r[n - 2], r[n],
                     [r[0] = 0, r[1] = 1]))$
differenceq(r[n + 2] = 5*r[n + 1] - 6*r[n], r[n], [r[0] = 0, r[1] = 1]);
/* => r(n) = Fibonacci[n + 1]   [Cohen, p. 83] */
errcatch(differenceq(r[n] = r[n - 1] + r[n - 2], r[n], [r[1] = 1, r[2] = 2]))$
expr: differenceq(r[n + 2] = r[n + 1] + r[n], r[n], [r[1] = 1, r[2] = 2]);
solve(2 = subst(n = 2, rhs(%)));
expr: factorsum(subst(%, expr));
subst(%phi = (1 + sqrt(5))/2, fibtophi(fib(n+1)));
ratsimp(rhs(expr) - %);
remvalue(expr)$
/* => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
      [Joan Z. Yu and Robert Israel in sci.math.symbolic] */
eqn: r[n] = (1 + c - c^(n-1) - c^(n+1))/(1 - c^n)*r[n - 1]
            - c*(1 - c^(n-2))/(1 - c^(n-1))*r[n - 2] + 1;
errcatch(differenceq(eqn, r[n], [r[1] = 1, r[2] = (2 + 2*c + c^2)/(1 + c)]))$
remvalue(eqn)$
/* Second order ODE with initial conditions---solve first using Laplace
   transforms: f(t) = sin(2 t)/8 - t cos(2 t)/4 */
atvalue(f(t), t = 0, 0)$
atvalue(diff(f(t), t), t = 0, 0)$
printprops(all, atvalue)$
ode: diff(f(t), t, 2) + 4*f(t) = sin(2*t);
laplace(ode, t, s);
solve(%, 'laplace(f(t), t, s));
ilt(%[1], s, t);
/* Now, solve the ODE directly */
subst(f(t) = f, ode);
ode(%, f, t);
ode_ibc(%, t = 0, f = 0, t = 0, 'diff(f, t) = 0);
remvalue(ode)$
/* Separable equation => y(x)^2 = 2 log(x + 1) + (4 x + 3)/(x + 1)^2 + 2 A */
'diff(y, x) = x^2/(y*(1 + x)^3);
ode(%, y, x);
lhs(%) = map('factorsum, rhs(%));
/* Homogeneous equation.  See Emilio O. Roxin, _Ordinary Differential
   Equations_, Wadsworth Publishing Company, 1972, p. 11
   => y(x)^2 = 2 x^2 log|A x| */
'diff(y, x) = y/x + x/y;
ode(%, y, x);
/* First order linear ODE: y(x) = [A - cos(x)]/x^3 */
x^2*'diff(y, x) + 3*x*y = sin(x)/x;
ode(%, y, x);
/* Exact equation => x + x^2 sin y(x) + y(x) = A   [Roxin, p. 15] */
'diff(y, x) = -(1 + 2*x*sin(y))/(1 + x^2*cos(y));
ode(%, y, x);
/* Nonlinear ODE => y(x)^3/6 + A y(x) = x + B */
'diff(y, x, 2) + y*'diff(y, x)^3 = 0;
ode(%, y, x);
/* => y(x) = [3 x + sqrt(1 + 9 x^2)]^(1/3) - 1/[3 x + sqrt(1 + 9 x^2)]^(1/3)
      [Pos96] */
errcatch(ode_ibc(%, x = 0, y = 0, x = 0, 'diff(y, x) = 2));
/* A simple parametric ODE: y(x, a) = A e^(a x) */
diff(y(x, a), x) = a*y(x, a);
ode(%, y(x, a), x);
/* ODE with boundary conditions.  This problem has nontrivial solutions
   y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer */
assume(not(equal(k, 0)))$
ode('diff(y, x, 2) + k^2*y = 0, y, x);
ode_ibc(%, x = 0, y = 0, x = 1, 'diff(y, x) = 0);
forget(not(equal(k, 0)))$
/* => y(x) = Z_v[sqrt(x)] where Z_v is an arbitrary Bessel function of order v
      [Gradshteyn and Ryzhik 8.491(9)] */
eqn: 'diff(y, x, 2) + 1/x*'diff(y, x) + 1/(4*x)*(1 - v^2/x)*y = 0;
declare(v, noninteger)$
ode(eqn, y, x);
remove(v, noninteger)$
declare(v, integer)$
ode(eqn, y, x);
remove(v, integer)$
/* Delay (or mixed differential-difference) equation.  See Daniel Zwillinger,
   _Handbook of Differential Equations_, Second Edition, Academic Press, Inc.,
   1992, p. 210 => y(t) = y0 sum((-a)^n (t - n + 1)^n/n!, n = 0..floor(t) + 1)
   */
'diff(y(t), t) + a*y(t - 1) = 0;
ode(%, y(t), t);
/* Discontinuous ODE   [Zwillinger, p. 221]
   => y(t) = cosh t   (0 <= t < T)
             (sin T cosh T + cos T sinh T) sin t
             + (cos T cosh T - sin T sinh T) cos t   (T <= t) */
sgn(t):= if t < 0 then -1 else 1$
ode(diff(y(t), t, 2) + sgn(t - TT)*y(t) = 0, y(t), t);
/*ode_ibc(%, t = 0, y(t) = 1, t = 0, 'diff(y(t), t) = 0);*/
remfunction(sgn)$
assume(pnz > 0)$
ode(diff(y(t), t, 2) + sign(t - TT)*y(t) = 0, y(t), t);
errcatch(ode_ibc(%, t = 0, y(t) = 1, t = 0, 'diff(y(t), t) = 0));
forget(pnz > 0)$
/* Integro-differential equation.  See A. E. Fitzgerald, David E. Higginbotham
   and Arvin Grabel, _Basic Electrical Engineering_, Fourth Edition,
   McGraw-Hill Book Company, 1975, p. 117.
   => i(t) = 5/13 [-8 e^(-4 t) + e^(-t) (8 cos 2 t + sin 2 t)] */
eqn: diff(i(t), t) + 2*i(t) + 5*integrate(i(tau), tau, 0, t) = 10*%e^(-4*t);
ode(eqn, i(t), t);
atvalue(i(t), t = 0, 0)$
atvalue(diff(i(t), t), t = 0, 10)$
laplace(eqn, t, s);
solve(%, 'laplace(i(t), t, s));
ilt(%[1], s, t);
remvalue(eqn)$
/* System of two linear, constant coefficient ODEs:
   x(t) = e^t [A cos(t) - B sin(t)], y(t) = e^t [A sin(t) + B cos(t)] */
system: [diff(x(t), t) = x(t) - y(t), diff(y(t), t) = x(t) + y(t)];
expand(odelinsys(system, [x(t), y(t)]));
/* Check the answer */
ratsimp(ev(system, %, diff));
map(lambda([q], is(equal(lhs(q), rhs(q)))), %);
/* Triangular system of two ODEs: x(t) = A e^t [sin(t) + 2],
      y(t) = A e^t [5 - cos(t) + 2 sin(t)]/5 + B e^(-t).
   See Nicolas Robidoux, ``Does Axiom Solve Systems of O.D.E.'s Like
   Mathematica?'', LA-UR-93-2235, Los Alamos National Laboratory, Los Alamos,
   New Mexico. */
system: [diff(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))),
         diff(y(t), t) = x(t) - y(t)];
odelinsys(system, [x(t), y(t)]);
/* Try solving this system one equation at a time */
subst(%c = %c1, factor(ode(system[1], x(t), t)));
map('factorsum, ode(subst(%, system[2]), y(t), t));
/* 3 x 3 linear system with constant coefficients:
   (1) real distinct characteristic roots (= 2, 1, 3)   [Roxin, p. 109]
       => x(t) = A e^(2 t),   y(t) = B e^t + C e^(3 t),
          z(t) = -A e^(2 t) - C e^(3 t) */
system: [diff(x(t), t) =  2*x(t),
         diff(y(t), t) = -2*x(t) + y(t) - 2*z(t),
         diff(z(t), t) =    x(t)        + 3*z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
/* (2) complex characteristic roots (= 0, -1 +- sqrt(2) i)   [Roxin, p. 111]
       => x(t) = A + e^(-t)/3 [-(B + sqrt(2) C) cos(sqrt(2) t) +
                                (sqrt(2) B - C) sin(sqrt(2) t)],
          y(t) = e^(-t) [B cos(sqrt(2) t) + C sin(sqrt(2) t)],
          z(t) = e^(-t) [(-B + sqrt(2) C) cos(sqrt(2) t)
                         -(sqrt(2) B + C) sin(sqrt(2) t)] */
system: [diff(x(t), t) = y(t), diff(y(t), t) = z(t),
         diff(z(t), t) = -3*y(t) - 2*z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
ratsimp(%);
/* (3) multiple characteristic roots (= 2, 2, 2)   [Roxin, p. 113]
       => x(t) = e^(2 t) [A + C (1 + t)],   y(t) = B e^(2 t),
          z(t) = e^(2 t) [A + C t] */
system: [diff(x(t), t) = 3*x(t) - z(t), diff(y(t), t) = 2*y(t),
         diff(z(t), t) = x(t) + z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
/* x(t) = x0 + [4 sin(w t)/w - 3 t] x0'   [Rick Niles]
          + 6 [w t - sin(w t)] y0 + 2/w [1 - cos(w t)] y0',
   y(t) = -2/w [1 - cos(w t)] x0' + [4 - 3 cos(w t)] y0 + sin(w t)/w y0' */
system: [diff(x(t), t, 2) = 2*w*diff(y(t), t),
         diff(y(t), t, 2) = -2*w*diff(x(t), t) + 3*w^2*y(t)];
odelinsys(system, [x(t), y(t)]);
remvalue(system)$