1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/* Original version of this file copyright 1999 by Michael Wester,
* and retrieved from http://www.math.unm.edu/~wester/demos/ODEs/problems.macsyma
* circa 2006-10-23.
*
* Released under the terms of the GNU General Public License, version 2,
* per message dated 2007-06-03 from Michael Wester to Robert Dodier
* (contained in the file wester-gpl-permission-message.txt).
*
* See: "A Critique of the Mathematical Abilities of CA Systems"
* by Michael Wester, pp 25--60 in
* "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
* and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
*/
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Ordinary Difference and Differential Equations ---------- */
/* Second order linear recurrence equation: r(n) = (n - 1)^2 + m n */
differenceq(r[n + 2] - 2 * r[n + 1] + r[n] = 2, r[n], [r[0] = 1, r[1] = m]);
/* => r(n) = 3^n - 2^n [Cohen, p. 67] */
errcatch(differenceq(r[n] = 5*r[n - 1] - 6*r[n - 2], r[n],
[r[0] = 0, r[1] = 1]))$
differenceq(r[n + 2] = 5*r[n + 1] - 6*r[n], r[n], [r[0] = 0, r[1] = 1]);
/* => r(n) = Fibonacci[n + 1] [Cohen, p. 83] */
errcatch(differenceq(r[n] = r[n - 1] + r[n - 2], r[n], [r[1] = 1, r[2] = 2]))$
expr: differenceq(r[n + 2] = r[n + 1] + r[n], r[n], [r[1] = 1, r[2] = 2]);
solve(2 = subst(n = 2, rhs(%)));
expr: factorsum(subst(%, expr));
subst(%phi = (1 + sqrt(5))/2, fibtophi(fib(n+1)));
ratsimp(rhs(expr) - %);
remvalue(expr)$
/* => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
[Joan Z. Yu and Robert Israel in sci.math.symbolic] */
eqn: r[n] = (1 + c - c^(n-1) - c^(n+1))/(1 - c^n)*r[n - 1]
- c*(1 - c^(n-2))/(1 - c^(n-1))*r[n - 2] + 1;
errcatch(differenceq(eqn, r[n], [r[1] = 1, r[2] = (2 + 2*c + c^2)/(1 + c)]))$
remvalue(eqn)$
/* Second order ODE with initial conditions---solve first using Laplace
transforms: f(t) = sin(2 t)/8 - t cos(2 t)/4 */
atvalue(f(t), t = 0, 0)$
atvalue(diff(f(t), t), t = 0, 0)$
printprops(all, atvalue)$
ode: diff(f(t), t, 2) + 4*f(t) = sin(2*t);
laplace(ode, t, s);
solve(%, 'laplace(f(t), t, s));
ilt(%[1], s, t);
/* Now, solve the ODE directly */
subst(f(t) = f, ode);
ode(%, f, t);
ode_ibc(%, t = 0, f = 0, t = 0, 'diff(f, t) = 0);
remvalue(ode)$
/* Separable equation => y(x)^2 = 2 log(x + 1) + (4 x + 3)/(x + 1)^2 + 2 A */
'diff(y, x) = x^2/(y*(1 + x)^3);
ode(%, y, x);
lhs(%) = map('factorsum, rhs(%));
/* Homogeneous equation. See Emilio O. Roxin, _Ordinary Differential
Equations_, Wadsworth Publishing Company, 1972, p. 11
=> y(x)^2 = 2 x^2 log|A x| */
'diff(y, x) = y/x + x/y;
ode(%, y, x);
/* First order linear ODE: y(x) = [A - cos(x)]/x^3 */
x^2*'diff(y, x) + 3*x*y = sin(x)/x;
ode(%, y, x);
/* Exact equation => x + x^2 sin y(x) + y(x) = A [Roxin, p. 15] */
'diff(y, x) = -(1 + 2*x*sin(y))/(1 + x^2*cos(y));
ode(%, y, x);
/* Nonlinear ODE => y(x)^3/6 + A y(x) = x + B */
'diff(y, x, 2) + y*'diff(y, x)^3 = 0;
ode(%, y, x);
/* => y(x) = [3 x + sqrt(1 + 9 x^2)]^(1/3) - 1/[3 x + sqrt(1 + 9 x^2)]^(1/3)
[Pos96] */
errcatch(ode_ibc(%, x = 0, y = 0, x = 0, 'diff(y, x) = 2));
/* A simple parametric ODE: y(x, a) = A e^(a x) */
diff(y(x, a), x) = a*y(x, a);
ode(%, y(x, a), x);
/* ODE with boundary conditions. This problem has nontrivial solutions
y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer */
assume(not(equal(k, 0)))$
ode('diff(y, x, 2) + k^2*y = 0, y, x);
ode_ibc(%, x = 0, y = 0, x = 1, 'diff(y, x) = 0);
forget(not(equal(k, 0)))$
/* => y(x) = Z_v[sqrt(x)] where Z_v is an arbitrary Bessel function of order v
[Gradshteyn and Ryzhik 8.491(9)] */
eqn: 'diff(y, x, 2) + 1/x*'diff(y, x) + 1/(4*x)*(1 - v^2/x)*y = 0;
declare(v, noninteger)$
ode(eqn, y, x);
remove(v, noninteger)$
declare(v, integer)$
ode(eqn, y, x);
remove(v, integer)$
/* Delay (or mixed differential-difference) equation. See Daniel Zwillinger,
_Handbook of Differential Equations_, Second Edition, Academic Press, Inc.,
1992, p. 210 => y(t) = y0 sum((-a)^n (t - n + 1)^n/n!, n = 0..floor(t) + 1)
*/
'diff(y(t), t) + a*y(t - 1) = 0;
ode(%, y(t), t);
/* Discontinuous ODE [Zwillinger, p. 221]
=> y(t) = cosh t (0 <= t < T)
(sin T cosh T + cos T sinh T) sin t
+ (cos T cosh T - sin T sinh T) cos t (T <= t) */
sgn(t):= if t < 0 then -1 else 1$
ode(diff(y(t), t, 2) + sgn(t - TT)*y(t) = 0, y(t), t);
/*ode_ibc(%, t = 0, y(t) = 1, t = 0, 'diff(y(t), t) = 0);*/
remfunction(sgn)$
assume(pnz > 0)$
ode(diff(y(t), t, 2) + sign(t - TT)*y(t) = 0, y(t), t);
errcatch(ode_ibc(%, t = 0, y(t) = 1, t = 0, 'diff(y(t), t) = 0));
forget(pnz > 0)$
/* Integro-differential equation. See A. E. Fitzgerald, David E. Higginbotham
and Arvin Grabel, _Basic Electrical Engineering_, Fourth Edition,
McGraw-Hill Book Company, 1975, p. 117.
=> i(t) = 5/13 [-8 e^(-4 t) + e^(-t) (8 cos 2 t + sin 2 t)] */
eqn: diff(i(t), t) + 2*i(t) + 5*integrate(i(tau), tau, 0, t) = 10*%e^(-4*t);
ode(eqn, i(t), t);
atvalue(i(t), t = 0, 0)$
atvalue(diff(i(t), t), t = 0, 10)$
laplace(eqn, t, s);
solve(%, 'laplace(i(t), t, s));
ilt(%[1], s, t);
remvalue(eqn)$
/* System of two linear, constant coefficient ODEs:
x(t) = e^t [A cos(t) - B sin(t)], y(t) = e^t [A sin(t) + B cos(t)] */
system: [diff(x(t), t) = x(t) - y(t), diff(y(t), t) = x(t) + y(t)];
expand(odelinsys(system, [x(t), y(t)]));
/* Check the answer */
ratsimp(ev(system, %, diff));
map(lambda([q], is(equal(lhs(q), rhs(q)))), %);
/* Triangular system of two ODEs: x(t) = A e^t [sin(t) + 2],
y(t) = A e^t [5 - cos(t) + 2 sin(t)]/5 + B e^(-t).
See Nicolas Robidoux, ``Does Axiom Solve Systems of O.D.E.'s Like
Mathematica?'', LA-UR-93-2235, Los Alamos National Laboratory, Los Alamos,
New Mexico. */
system: [diff(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))),
diff(y(t), t) = x(t) - y(t)];
odelinsys(system, [x(t), y(t)]);
/* Try solving this system one equation at a time */
subst(%c = %c1, factor(ode(system[1], x(t), t)));
map('factorsum, ode(subst(%, system[2]), y(t), t));
/* 3 x 3 linear system with constant coefficients:
(1) real distinct characteristic roots (= 2, 1, 3) [Roxin, p. 109]
=> x(t) = A e^(2 t), y(t) = B e^t + C e^(3 t),
z(t) = -A e^(2 t) - C e^(3 t) */
system: [diff(x(t), t) = 2*x(t),
diff(y(t), t) = -2*x(t) + y(t) - 2*z(t),
diff(z(t), t) = x(t) + 3*z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
/* (2) complex characteristic roots (= 0, -1 +- sqrt(2) i) [Roxin, p. 111]
=> x(t) = A + e^(-t)/3 [-(B + sqrt(2) C) cos(sqrt(2) t) +
(sqrt(2) B - C) sin(sqrt(2) t)],
y(t) = e^(-t) [B cos(sqrt(2) t) + C sin(sqrt(2) t)],
z(t) = e^(-t) [(-B + sqrt(2) C) cos(sqrt(2) t)
-(sqrt(2) B + C) sin(sqrt(2) t)] */
system: [diff(x(t), t) = y(t), diff(y(t), t) = z(t),
diff(z(t), t) = -3*y(t) - 2*z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
ratsimp(%);
/* (3) multiple characteristic roots (= 2, 2, 2) [Roxin, p. 113]
=> x(t) = e^(2 t) [A + C (1 + t)], y(t) = B e^(2 t),
z(t) = e^(2 t) [A + C t] */
system: [diff(x(t), t) = 3*x(t) - z(t), diff(y(t), t) = 2*y(t),
diff(z(t), t) = x(t) + z(t)];
odelinsys(system, [x(t), y(t), z(t)]);
/* x(t) = x0 + [4 sin(w t)/w - 3 t] x0' [Rick Niles]
+ 6 [w t - sin(w t)] y0 + 2/w [1 - cos(w t)] y0',
y(t) = -2/w [1 - cos(w t)] x0' + [4 - 3 cos(w t)] y0 + sin(w t)/w y0' */
system: [diff(x(t), t, 2) = 2*w*diff(y(t), t),
diff(y(t), t, 2) = -2*w*diff(x(t), t) + 3*w^2*y(t)];
odelinsys(system, [x(t), y(t)]);
remvalue(system)$
|