File: test_programming.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (121 lines) | stat: -rw-r--r-- 4,820 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/Programming/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Programming and Miscellaneous ---------- */
/* How easy is it to substitute x for a + b in the following expression?
   => (x + c)^2 + (d - x)^2 */
expr: (a + b + c)^2 + (d - a - b)^2;
ratsubst(x, a + b, expr);
factorsum(%);
subst(b = x - a, expr);
remvalue(expr)$
/* How easy is it to substitute r for sqrt(x^2 + y^2) in the following
   expression? => x/r */
x/sqrt(x^2 + y^2);
subst(sqrt(x^2 + y^2) = r, %);
/* Change variables so that the following transcendental expression is
   converted into a rational expression   [Vernor Vinge]
   => (r - 1)^4 (u^4 - r u^3 - r^3 u + r u + r^4)/[u^4 (2 r - 1)^2] */
q: (1/r^4 + 1/(r^2 - 2*r*cos(t) + 1)^2
          - 2*(r - cos(t))/(r^2 * (r^2 - 2*r*cos(t) + 1)^(3/2))) /
   (1/r^4 + 1/(r - 1)^4 - 2*(r - 1)/(r^2 * (r^2 - 2*r + 1)^(3/2)));
assume(r > 1, u >= r - 1, u > 0);
subst([r^2 - 2*r*cos(t) + 1 = u^2, cos(t) = (r^2 - u^2 + 1)/(2*r)], q);
factor(scanmap(factor, %));
forget(r > 1, u >= r - 1, u > 0)$
/* Establish a rule to symmetrize a differential operator:   [Stanly Steinberg]
   f g'' + f' g' -> (f g')' */
defrule(symmetrize, f(x)*diff(g(x), x, 2) + diff(f(x), x)*diff(g(x), x),
                    'diff(f(x)*'diff(g(x), x), x));
q: f(x)*diff(g(x), x, 2) + diff(f(x), x)*diff(g(x), x);
apply1(q, symmetrize);
/* => 2 (f g')' + f g */
apply1(2*q + f(x)*g(x), symmetrize);
apply1(expand(2*q + f(x)*g(x)), symmetrize);
matchdeclare(x, true)$
defrule(symmetrize, f(x)*diff(g(x), x, 2) + diff(f(x), x)*diff(g(x), x),
                    'diff(f(x)*'diff(g(x), x), x));
q: f(y)*diff(g(y), y, 2) + diff(f(y), y)*diff(g(y), y);
apply1(q, symmetrize);
apply1(2*q + f(y)*g(y), symmetrize);
matchdeclare(f, true, g, true)$
defrule(symmetrize, f(x)*diff(g(x), x, 2) + diff(f(x), x)*diff(g(x), x),
                    'diff(f(x)*'diff(g(x), x), x));
q: ff(x)*diff(gg(x), x, 2) + diff(ff(x), x)*diff(gg(x), x);
errcatch(apply1(q, symmetrize));
remvalue(q)$
/* Infinite lists: [1 2 3 4 5 ...] * [1 3 5 7 9 ...]
   => [1 6 15 28 45 66 91 ...] */
l1: [1, 2, 3, 4, 5]$
l2: [1, 3, 5, 7, 9]$
l1 * l2;
remvalue(l1, l2)$
/* Write a simple program to compute Legendre polynomials */
p[n](x):= ratsimp(1/(2^n*n!) * diff((x^2 - 1)^n, x, n));
/* p[0](x) = 1,   p[1](x) = x,   p[2](x) = (3 x^2 - 1)/2,
   p[3](x) = (5 x^3 - 3 x)/2,   p[4](x) = (35 x^4 - 30 x^2 + 3)/8 */
for i:0 thru 4 do display(p[i](x))$
/* p[4](1) = 1 */
p[4](1);
/* Now, perform the same computation using a recursive definition */
pp[0](x):= 1$
pp[1](x):= x$
pp[n](x):= ratsimp(((2*n - 1)*x*pp[n - 1](x) - (n - 1)*pp[n - 2](x))/n);
for i:0 thru 4 do disp('pp[i](x) = pp[i](x))$
pp[4](1);
remarray(p, pp)$
/* Iterative computation of Fibonacci numbers */
myfib(n):= block([i, j, k, f],
           if n < 0 then
              error('undefined)
           else if n < 2 then
              n
           else
             (j: 0,   k: 1,
              for i:2 thru n do
                (f: j + k,   j: k,   k: f),
              f))$
/* Convert the function into FORTRAN syntax */
errcatch(apply('gentran, [%]));
/* Create a list of the first 11 values of the function. */
makelist(myfib(i), i, 0, 10);
remfunction(myfib)$
/* Define the function p(x) = x^2 - 4 x + 7 such that p(lambda) = 0 for
   lambda = 2 +- i sqrt(3) and p(A) = [[0 0], [0 0]] for A = [[1 -2], [2 3]]
   (the lambda are the eigenvalues and p(x) is the characteristic polynomial of
   A)   [Johnson and Reiss, p. 184] */
p(x):= x^2 - 4*x + 7;
ratsimp(p(2 + %i*sqrt(3)));
p(matrix([1, -2], [2, 3]));
remfunction(p)$
/* Define a function to be the result of a calculation */
-log(x^2 - 2^(1/3)*x + 2^(2/3))/(6 * 2^(2/3))
   + atan((2*x - 2^(1/3))/(2^(1/3) * sqrt(3))) / (2^(2/3) * sqrt(3))
   + log(x + 2^(1/3))/(3 * 2^(2/3));
define(f(x), %);
expr: f(y);
/* Display the top-level structure of a nasty expression, hiding the
   lower-level details. */
reveal(%, 1);
reveal(expr, 2);
remvalue(expr)$
remfunction(f)$
/* Convert the following expression into TeX or LaTeX */
declare(x, complex)$
y = sqrt((exp(x^2) + exp(-x^2))/(sqrt(3)*x - sqrt(2)));
tex(%);
remove(x, complex)$