File: test_vector_analysis.mac

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (70 lines) | stat: -rw-r--r-- 3,245 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/VectorAnalysis/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Vector Analysis ---------- */
/* Vector norm => sqrt(15) */
mat_norm([1 + %i, -2, 3*%i]);
load(vect)$
/* Cross product: (2, 2, -3) x (1, 3, 1) => (11, -5, 4) */
vect_express([2, 2, -3] ~ [1, 3, 1]);
declare([a, b, c, d, f, g], nonscalar)$
/* (a x b) . (c x d) => (a . c) (b . d) - (a . d) (b . c) */
(a ~ b) . (c ~ d);
vectorsimp(%), expandall;
/* => (2 y z^3 - 2 x^2 y^2 z,   x y,   2 x y^2 z^2 - x z) */
vect_express(curl [x*y*z, x^2*y^2*z^2, y^2*z^3]);
ev(%, diff);
/* DEL . (f x g) => g . (DEL x f) - f . (DEL x g) */
div (f ~ g);
vectorsimp(%), expandall;
remove([a, b, c, d, f, g], nonscalar)$
/* Express DEL . a in spherical coordinates (r, theta, phi) for
   a = (a_r(r, theta, phi), a_theta(r, theta, phi), a_phi(r, theta, phi)).
   Here, phi is in the x-y plane and theta is the angle with the z-axis.
   => 1/r^2 d/dr[r^2 a_r] + 1/[r sin(theta)] d/dtheta[sin(theta) a_theta]
      + 1/[r sin(theta)] da_phi/dphi
   => da_r/dr + (2 a_r)/r + 1/r da_theta/dtheta + a_theta/[r tan(theta)]
      + 1/[r sin(theta)] da_phi/dphi
   See Keith R. Symon, _Mechanics_, Third Edition, Addison-Wesley Publishing
   Company, 1971, p. 103. */
vect_coordsys(spherical)$
vect_coords;
depends([a_r, a_theta, a_phi], [r, theta, phi]);
vect_express(div [a_r, a_phi, a_theta]);
expand(ev(%, 'diff));
remove([a_r, a_theta, a_phi], dependency)$
/* Express dR/dt in spherical coordinates (r, theta, phi) where R is the
   position vector r*Rhat(theta, phi) with Rhat being the unit vector in the
   direction of R => (dr/dt, r dtheta/dt, r sin(theta) dphi/dt)
   [Symon, p. 98] */
depends([r, theta, phi], t, rhat, [theta, phi])$
vect_express(diff([r*rhat, 0, 0], t));
remove([r, theta, phi, rhat], dependency, ".", commutative)$
vect_coordsys(cartesian3d)$
/* Scalar potential => x^2 y + y + 2 z^3 */
scalar_potential([2*x*y, x^2 + 1, 6*z^2]);
/* Vector potential => (x y z, x^2 y^2 z^2, y^2 z^3) is one possible solution.
   See Harry F. Davis and Arthur David Snider, _Introduction to Vector
   Analysis_, Third Edition, Allyn and Bacon, Inc., 1975, p. 97. */
vector_potential([2*y*z^3 - 2*x^2*y^2*z, x*y, 2*x*y^2*z^2 - x*z]);
vect_express(curl(%))$
ratsimp(ev(%, diff));
/* Orthogonalize the following vectors (Gram-Schmidt).  See Lee W. Johnson and
   R. Dean Riess, _Introduction to Linear Algebra_, Addison-Wesley Publishing
   Company, 1981, p. 104 => [[0 1 2 1], [0 -1 1 -1], [2 1 0 -1]]^T */
[[0, 1, 2, 1], [0, 1, 3, 1], [1, 1, 1, 0], [1, 3, 6, 2]];
gramschmidt(%);