File: plotmaxima.html

package info (click to toggle)
maxima 5.49.0%2Bdsfg-1
  • links: PTS
  • area: main
  • in suites:
  • size: 128,932 kB
  • sloc: lisp: 437,845; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,206; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (82 lines) | stat: -rw-r--r-- 2,504 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
<html>
<head>
<title>Maxima Plots</title>
</head>
<br>
<body  BGCOLOR=#ffffff TEXT=#000000 LINK=#244C21>
<img src=net.sourceforge.maxima.png align=left border=0>
<h2>Maxima Plots</h2>

<p>Double click on the examples in blue to see the result.</p>

<h4>plot2d</h4>

<ul>
<li>Plot of a function of one variable:<br>
<eval program=maxima>
     plot2d (sin(x), [x, -%pi, %pi])$
</eval>
</li>
<li>Plot of two implicit functions:<br>
<eval program=maxima>
     plot2d([x^2+y^2=1, -abs(x)], [x, -1.5, 1.5], [y, -2, 2],
            same_xy, nolegend);
</eval>
</li>
<li>Plot of a function and data points:<br>
<eval program=maxima>
     plot2d([[discrete,[[10,.6],[20,.9],[30,1.1],[40,1.3],[50,1.4]]],
                        2*%pi*sqrt(l/980)], [l,0,50], [style,points,lines],
            [point_type, asterisk], [legend, "experiment", "theory"],
            [xlabel,"length"], [ylabel,"period"])$
</eval>
</li>
</ul>
<br>

<h4>plot3d</h4>
<p>When using the "gnuplot_pipes" or "xmaxima" plot formats, you can rotate the
object by dragging with the left mouse button depressed.</p>  
<ul>
<li>To plot the function of two variables: z = 2^(-u^2+v^2) with u and v
varying in [-2,2] and [-2,2] respectively, and with u on the x axis, and v
on the y axis, do the following:<br>
<eval program=maxima>
     plot3d(2^(-u^2+v^2),[u,-2,2],[v,-2,2]);
</eval>
</li>
<li> A <b>Moebius band</b> can be plotted given 3 expressions (for the
coordinates in the three axes) depending on two parameters, x and y in
this example<br>
<eval program=maxima>
     plot3d([cos(a)*(3+b*cos(a/2)), sin(a)*(3+b*cos(a/2)), b*sin(a/2)],
            [a,-%pi,%pi], [b,-1,1], [grid,40,15]);
</eval>
<br>
The additional optional option [grid,50,15]
gives the grid number of rectangles in the a direction and b direction.
</li>
<li>A <b>Riemann surface</b>: Real part of z^1/3<br>
<eval program=maxima>
     plot3d(r^.33*cos(th/3),[r,0,1],[th,0,6*%pi], [grid,12,80],
            [transform_xy,polar_to_xy]);
</eval>
</li>
<li>A <b>Klein bottle</b>:<br>
<eval program=maxima>
     plot3d([5*cos(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0) - 10.0,
             -5*sin(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0),
              5*(-sin(x/2)*cos(y)+cos(x/2)*sin(2*y))],
            [x,-%pi,%pi], [y,-%pi,%pi], [grid,40,40]);
</eval>
</li>
<li>A <b>torus</b><br>
<eval program=maxima>
     plot3d([cos(y)*(10.0+6*cos(x)), sin(y)*(10.0+6*cos(x)), -6*sin(x)],
            [x,0,2*%pi], [y,0,2*%pi], [grid,20,20]);
</eval>
</li>
</ul>
<br>
</body>
</html>