File: eigen.mac

package info (click to toggle)
maxima 5.49.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 128,980 kB
  • sloc: lisp: 437,854; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,204; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (221 lines) | stat: -rw-r--r-- 8,120 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/* modified for doe macsyma with define_variable */

/*	this is the file eigen > dsk:share;.
	this is the source code for the new eigen package and it is
	macsyma batchable, i.e. batch(eigen,>,dsk,share);.  if you do not want
	to waste time (and/or paper...) the fastloadable version is on the file
	eigen fasl dsk:share;.  you can load the latter using macsyma's 
	loadfile command, i.e. loadfile(eigen,fasl,dsk,share);. the functions
	are described in the file eigen usage dsk:share;, and the demo file in
	which the functions are demonstrated is eigen demo dsk:share;.     */

/* commented out of doe macsyma
eval_when(translate_file,
        modedeclare([hermitianmatrix,nondiagonalizable,knowneigvals,
	knowneigvects],boolean,
	[index1,index2,index3,index4,dimnsn,count,%rnum],fixnum),
        declare([hermitianmatrix,nondiagonalizable,knowneigvals,
        knowneigvects,listeigvects,listeigvals,%rnum,listarith,programmode,
	algebraic,realonly,multiplicities,solveexplicit],special))$ */

eval_when([translate,batch,demo,load,loadfile],
mi(var)::=buildq([var],mode_identity(fixnum,var)),
dv(var)::=buildq([var],define_variable(var,false,boolean)))$

/* commented out of doe macsyma
sstatus(feature,eigen)$

hermitianmatrix:false$

nondiagonalizable:false$

knowneigvals:false$

knowneigvects:false$

listeigvects:[]$

listeigvals:[]$
*/

dv(hermitianmatrix)$ dv(nondiagonalizable)$ dv(knowneigvals)$
dv(knowneigvects)$

define_variable(listeigvects,[],list)$
define_variable(listeigvals,[],list)$
define_variable(rightmatrix,[],any)$
define_variable(leftmatrix,[],any)$

/* conjugate(x):=sublis('[%i=-%i],x)$ */

innerproduct(x,y):=block([listarith],listarith:true,ratsimp(conjugate(x).y))$
/*
unitvector(x):=block([listarith,intrn],listarith:true,intrn:innerproduct(x,x),
intrn:sqrt(intrn),x/intrn)$
*/
unitvector(x):=block([listarith],listarith:true,x/sqrt(innerproduct(x,x)))$

columnvector(x):=transpose(matrix(x))$


gramschmidt(x%,[myinnerproduct]):=
		block([listarith,dimnsn,listall,intern,count,denom,unit,index1,
		index2],
                if myinnerproduct=[] then myinnerproduct:innerproduct
                else myinnerproduct:first(myinnerproduct),
                mode_declare([dimnsn,count,index1,index2],fixnum,
                              [listall],list,[intern,denom,unit],any),
		listarith:true,dimnsn:mi(length(x%)),listall:[part(x%,1)],
		count:1,if dimnsn=1 then return(x%)
		else (for index1:2 thru dimnsn do
		(unit:part(x%,index1),for index2 thru count do
		(intern:part(listall,index2),denom : apply (myinnerproduct, [intern, intern]),
		unit:factor(ratsimp(unit - apply (myinnerproduct, [intern, unit])*intern/denom
		))),
		count:count+1,listall:endcons(unit,listall)),
		return(listall)))$


eigenvalues(mat):=
		block([dimnsn,listall,solution,multiplicities,solveexplicit,
	        dummy:?gensym(),index2],
                mode_declare([dimnsn,index2],fixnum,[listall,solution],list,
                             [dummy],any),
		listall:[],
		solveexplicit:true,
		dimnsn:mi(length(mat)),
		solution:block([programmode:true],
	        solve(charpoly(mat,dummy),dummy)),
		if solution=[] then 
		(print(" "),print("eigenvalues: solve is unable to find the roots of the characteristic polynomial."),
                return(listall))
                else if apply("+",multiplicities) < dimnsn then
		(print(" "),print("eigenvalues: solve is unable to find some of the roots of the characteristic polynomial."),
                dimnsn:apply("+",multiplicities)),
		for index2 thru dimnsn do
		(dimnsn:mi(dimnsn-part(multiplicities,index2)+1),
		listall:endcons(rhs(part(solution,index2)),listall)),
		listall:endcons(multiplicities,[listall]),
		return(listall))$

/* EIGENVECTORS - Compute eigenvectors of the matrix mat.

  The return value is a list of two elements. The first is a list of the
  eigenvalues of mat and a list of the multiplicities of the eigenvalues,
  found by calling eigenvalues().  The second is a list of lists of
  eigenvectors. There is one list of eigenvectors for each eigenvalue.
  There may be one or more eigenvectors in each list.

  The following flags are used:

  nondiagonalizable is set to true when the matrix is nondiagonalizable
  after eigenvectors returns, or false otherwise.

  hermitianmatrix when true, causes the degenerate eigenvectors of the
  Hermitian matrix to be orthogonalized using the Gram-Schmidt algorithm.

  knowneigvals when true causes the eigen package to assume the eigenvalues
  of the matrix are known to the user and stored under the global name
  listeigvals. listeigvals should be set to a list similar to the output
  eigenvalues.
 */
eigenvectors(mat):=
		block([eigvecs,equations,unknowns,solution,eigvals,dimnsn,
		count,vectr,index3,index4,index2,index1,matrx,mmatrx,notknwn,
		unit,multiplicities,%rnum,realonly,algebraic,interm,intern],
		local(solution, mmatrx),
                mode_declare([equations,unknowns,solution,eigvals,
                              unit,interm],list,
                             [dimnsn,count,index3,index4,index2,index1],fixnum,
                             [vectr,matrx,mmatrx,intern,notknwn],any),
                unknowns:[],dimnsn:mi(length(mat)),
                count:mi(dimnsn),notknwn:?gensym(),
		mat:rationalize(mat),
		if knowneigvals then eigvals:listeigvals
		else eigvals:eigenvalues(mat),
		if eigvals=[] then (nondiagonalizable:true,return(eigvals))
                else (multiplicities:part(eigvals,2),
                count:length(multiplicities),
		for index1 thru dimnsn do
		unknowns:endcons(concat(notknwn,index1),unknowns),
		vectr:columnvector(unknowns),matrx:mat.vectr,
		nondiagonalizable:false,
		eigvecs:[],realonly:false,algebraic:true,
		for index1 thru count do 
		(mmatrx:matrx-part(eigvals,1,index1)*vectr,
		equations:[],
		for index2 thru dimnsn do
		equations:cons(mmatrx[index2,1],equations),%rnum:0,
		solution:algsys(equations,unknowns),
		interm:map('rhs,solution[1]),
		unit:[],if %rnum#part(multiplicities,index1)
		then nondiagonalizable:true,
		for index3 thru %rnum do
		(intern:substvectk(%rnum_list,index3,interm),
                unit:append(unit,[intern])),
	        if unit=[] then
		(print(" "),print("eigenvectors: the eigenvector(s) for the",
                index1,"th eigenvalue will be missing.")),
		if hermitianmatrix and %rnum>1 then unit:gramschmidt(unit),
		eigvecs:append(eigvecs,[unit])),
		return([eigvals, eigvecs])))$


/* the first arg is of the form [r1,r2,r3].
   we want to construct [r1=0,r2=1,r3=0] for example. */		

substvectk(l,n,exp):=(mode_declare(l,list,n,fixnum,exp,any),
                block([sub_list:[],j:0],mode_declare(sub_list,list,j,fixnum),
                for var in l do (mode_declare(var,any),
                 j:j+1,sub_list:cons(var = if j=n then 1 else 0,sub_list)),
                sublis(sub_list,exp)))$


uniteigenvectors (M):= block ([uv], local(uv),
    mode_declare (uv, list, [i, j], fixnum),

    if knowneigvects
        then uv : copy (listeigvects)
        else uv : copy (eigenvectors (M)),

    if uv = []
        then []
        else
           (for i thru length (uv[2])
                do for j thru length (uv[2][i])
                    /* modification in-place (OK due to copy above) */
                    do uv[2][i][j] : ratsimp (unitvector (uv[2][i][j])),
            uv));


similaritytransform(mat):=
		block([listvec,listuevec], local(listuevec),
                mode_declare([listvec,listuevec],list),
		listuevec:uniteigenvectors(mat),
		if nondiagonalizable then return(listuevec)
		else (listvec: apply (append, listuevec[2]),
		rightmatrix:transpose(apply('matrix,listvec)),
		if hermitianmatrix then
		leftmatrix:conjugate(transpose(rightmatrix))
		else leftmatrix:rightmatrix^^-1,
		return(listuevec)))$


conj(x):=conjugate(x)$

inprod(x,y):=innerproduct(x,y)$

uvect(x):=unitvector(x)$

covect(x):=columnvector(x)$

gschmit(x%, [f]):= if f = [] then gramschmidt(x%) else gramschmidt (x%, first(f))$

eivals(mat):=eigenvalues(mat)$

eivects(mat):=eigenvectors(mat)$

ueivects(mat):=uniteigenvectors(mat)$

simtran(mat):=similaritytransform(mat)$