File: simplify_sum.mac

package info (click to toggle)
maxima 5.49.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 128,980 kB
  • sloc: lisp: 437,854; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,204; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (980 lines) | stat: -rw-r--r-- 34,362 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
/*****************************************************************************
 *                                                                           *
 * ************************************************************************* *
 * ***                                                                   *** *
 * ***                       * simplify_sum *                            *** *
 * ***                                                                   *** *
 * ***   This file implements simplify_sum function for simplification   *** *
 * ***   of sums.                                                        *** *
 * ***   The methods used by simplify_sum:                               *** *
 * ***     1. internal simplification using simpsum=true                 *** *
 * ***     2. Gosper algorithm                                           *** *
 * ***     3. rational summation with conversion to psi functions        *** *
 * ***     4. Zeilberger algorithm                                       *** *
 * ***     5. conversion to hypergeometrical sums, reduced by hgfred.    *** *
 * ***                                                                   *** *
 * ***   Author:  Andrej Vodopivec <andrejv@users.sourceforge.net>       *** *
 * ***   Licence: GPL                                                    *** *
 * ***                                                                   *** *
 * ************************************************************************* *
 *                                                                           *
 *                                                                           *
 * Demo:                                                                     *
 *                                                                           *
 * (%i6) s : simplify_sum(sum(((-1)^k*x*binom(n,k))/(x+k),k,0,n))$           *
 * (%i7) factcomb(s);                                                        *
 * (%o7) (n!*x!)/(x+n)!                                                      *
 *                                                                           *
 * (%i8) simplify_sum(sum((-1)^k*binom(x-2*k,n-k)*binom(x-k+1,k),k,0,n));    *
 * Is  x - 2 * n   positive, negative, or zero?  pos;                        *
 * Is  x - n + 1   positive, negative, or zero?  pos;                        *
 * (%o8) ((-1)^n+1)/2                                                        *
 *                                                                           *
 * (%i9) simplify_sum(sum(binom(n,k)/(k+1),k,0,n));                          *
 * (%o9) (2*2^n-1)/(n+1)                                                     *
 *                                                                           *
 * More examples with load("simplify_sum_test");                             *
 *                                                                           *
 *****************************************************************************/

load("zeilberger")$
load("solve_rec/solve_rec")$
load("simplifying.lisp")$
load("opsubst")$

eval_when(batch,
          ttyoff : true,
          nolabels : true)$

put('simplify_sum, 1.0, 'version)$

define_variable(zeilberger_check, true, boolean)$
define_variable(sum_min, 0, any)$
define_variable(use_simpsum, true, boolean)$
define_variable(use_harmonic, true, boolean)$
define_variable(use_integral, true, boolean)$
define_variable(use_gosper, true, boolean)$
define_variable(use_ratfun, true, boolean)$
define_variable(use_zeilberger, true, boolean)$
define_variable(use_hypergeometric, true, boolean)$
define_variable(use_telescoping, true, boolean)$

define_variable(simplify_sum_depth, 0, fixnum)$
define_variable(simplify_sum_max_depth, 3, fixnum)$

declare(simplify_sum, evfun)$
declare(split_sum, evfun)$

/*******************
 *
 * Debugging.
 *
 *******************/

define_variable(verbose_level, 0, fixnum)$

ss_print_message(level, [mess]) :=
  if verbose_level>=level then (
    apply(print, mess))$

/*******************
 *
 * simplify_sum(expr) : tries to simplify all sums in expr.
 *
 *******************/

simplify_sum(expr) :=
  /* Check if we have a sum - if not then simplify all arguments.       */
  if mapatom(expr) then expr
  else if part(expr, 0)#nounify(sum) then map(simplify_sum, expr)


  /* Check for sum(expr, var, min, inf) */
  else if (part(expr, 3)=-inf or part(expr, 3)=minf) and part(expr, 4)=inf then block(
    [summand, var_, lo, hi],
    [summand, var_, lo, hi]: args(expr),
    simplify_sum(apply('sum, [summand, var_, 0, inf])) +
    simplify_sum(apply('sum, [subst(var_=-var_, summand), var_, 1, inf])))

  /* Check for sum(expr, var, minf, hi) */
  else if part(expr, 3)=-inf or part(expr, 3)=minf then (
    simplify_sum(apply('sum, [subst(var_=-var_, summand), var_, -hi, inf])))

  /* Trigonometric sums */
  else if catch(
    scanmap(
      lambda([u], if not atom(u) and member(part(u,0), [sin, cos, sinh, cosh]) then throw(true)),
      expr,
      bottomup))=true then block(
    [sm1 : simplify_sum(split_sum(expand(exponentialize(expr))))],
    if freeof_sum(sm1) then trigsimp(rectform(sm1))
    else expr)

  /* Sums with Fibonacci numbers */
  else if catch(
    scanmap(
      lambda([u], if not atom(u) and part(u,0)=fib then throw(true)),
      expr,
      bottomup))=true then block(
    [sm1: simplify_sum(split_sum(expand(fibtophi(expr))))],
    if freeof_sum(sm1) then block(
      [algebraic:true],
      ratsimp(sm1)))

  /* Check if summand is a logarighm */
  else if not(atom(part(expr, 1))) and part(expr, 1, 0)=log and part(expr, 3)#minf then block(
    [%up, %sub],
    if part(expr, 4)=inf then (
      %sub: log(simplify_product(apply(product,
            [exp(part(expr, 1)), part(expr, 2), part(expr, 3), %up]))),
      %sub: limit(%sub, %up, inf),
      if not(freeof(inf, %sub) and freeof(minf, %sub)) then error("Sum is divergent!")
      elseif freeof_limit(%sub) then %sub
      else expr)
    else (
      log(simplify_product(apply(product, cons(exp(part(expr, 1)), rest(args(expr))))))))

  /* Main summation code starts here */
  else block(
    [simpsum:false,
     summand : ratsimp(part(expr, 1)),
     var : part(expr, 2),
     lo : part(expr, 3),
     hi : part(expr, 4),
     sm1 : expr,
     linsolvewarn:false,
     simplify_sum_depth:simplify_sum_depth+1,
     ss_new_context: concat('ss_context, simplify_sum_depth)],

    /*** Prevent possible infinite recursion. ***************************/
    if simplify_sum_depth>simplify_sum_max_depth then return(expr),

    /*** Simplify the summand *******************************************/

    /* make sure we dont have contexts from previous runs */
    if member(ss_new_context, contexts) then
      killcontext(ss_new_context),
 
    supcontext (ss_new_context),
    if lo#minf and lo#-inf then assume(var>=lo),
    if hi#inf then assume(var<=hi),
    summand : simplify_sum(summand),
    killcontext(ss_new_context),
    expr : intosum(apply(sum, [summand, var, lo, hi])),
    
    /*** Default maxima simplification. *********************************/
    if use_simpsum=true then (
      ss_print_message(1, "Trying with simpsum=true ..."),
      sm1 : ev(apply(sum, [summand, var, lo, hi]), simpsum = true),
      ss_print_message(1, "sum with simpsum=true returns:", sm1)),

    /*** Sums with harmonic_number(n) by parts. *************************/
    if use_harmonic=true and not freeof_sum(sm1) and hi#inf then block(
      [a, b, harmonic_number_args: get_harmonic_number_args(summand), harmonic_part],
      if length(harmonic_number_args)>0 then (
        harmonic_part : apply(gen_harmonic_number, first(harmonic_number_args)),
        [a, b]:bothcoef(summand, harmonic_part),
        ss_print_message(1, "Trying with sum_by_parts"),
        ss_print_message(2, "harmonic_number by parts"),
        ss_print_message(2, "Coefficients", a, b),
        if a#0 then
          sm1: simplify_sum(sum_by_parts(summand-b, a, var, lo, hi)) +
               simplify_sum(apply('sum, [b, var, lo, hi]))),
        ss_print_message(1, "sum_by_parts returns", sm1)),

    /*** Try with integral representation *******************************/
    if use_integral=true and not freeof_sum(sm1) then (
      ss_print_message(1, "Trying with integral representation."),
      sm1 : sum_by_integral(summand, var, lo, hi),
      ss_print(1, "Integral representation returns", sm1)),
 

    /*** Now let's try the Gosper algorithm *****************************/
    if errcatch(
      if use_gosper and not(atom(sm1)) and not freeof_sum(sm1) then block(
        [hi1 : ?gensym(), lo1 : ?gensym()],
        ss_print_message(1, "Trying with Gosper ..."),
        sm1 : block([ttyoff:ttyoff], nusum(summand, var, lo1, hi1)),
        if freeof_sum(sm1) then (
          ss_print_message(1, "Gosper returns:", sm1),
          if lo=minf or lo=-inf then
            sm1 : limit(sm1, lo1, lo)
          else
            sm1 : subst(lo1=lo, sm1),
          if hi=inf then
            sm1 : limit(sm1, hi1, hi)
          else
            sm1 : subst(hi1=hi, sm1),
          if not freeof_limit(sm1) or not freeof('und, sm1) then sm1: expr)
        else sm1 : expr)) = [] then sm1 : expr,


    /*** Try the extended Gosper algorithm ******************************/
    if errcatch(
      if use_gosper and not(atom(sm1)) and not freeof_sum(sm1) then block(
        [hi1 : ?gensym(), lo1 : ?gensym()],
        ss_print_message(1, "Trying with extended Gosper ..."),
        sm1 : block([ttyoff:ttyoff], extended_nusum(summand, var, lo1, hi1)),
        if freeof_sum(sm1) then (
          ss_print_message(1, "Extended Gosper returns:", sm1),
          if lo=minf or lo=-inf then
            sm1 : limit(sm1, lo1, lo)
          else
            sm1 : subst(lo1=lo, sm1),
          if hi=inf then
            sm1 : limit(sm1, hi1, hi)
          else
            sm1 : subst(hi1=hi, sm1),
          if not freeof_limit(sm1) then sm1 : expr)
        else sm1 : expr)) = [] then sm1 : expr,

    /*** Try converting the sum to finite sum of psi functions **********/
    if use_ratfun and not(atom(sm1)) and not( freeof_sum(sm1) ) and ?ratp(summand, var)
    then block(
      [ratfun, expr1: expr],
      ss_print_message(1, "Trying ratfun -> psi ..."),
      ratfun : part(expr1, 1),
      if hi=inf and hipow(num(ratfun), var) > hipow(denom(ratfun), var)-2 then
        error("Sum is divergent!"),
      polypart : first(divide(num(ratfun), denom(ratfun), var)),
      expr1 : intosum(substpart(ratsimp(ratfun - polypart), expr1, 1)),
      ss_print_message(3, "Polynomial part", polypart),
      ss_print_message(3, "Without polynomial part", expr1),
      /* polynomial part */
      sm1 : simplify_sum(apply(sum, [polypart, var, lo, hi])),
      ss_print_message(4, "Polynomial part contributes", sm1),
      /* fractional part */
      ratfun : part(expr1, 1),
      sm1 : sm1 + ratfun_to_psi(ratfun, var, lo, hi)),
    
    /*** check for sum((-1)^n*ratfun, n, lo, inf); ****************************/
    if use_ratfun and not(atom(sm1)) and not( freeof_sum(sm1) ) and
      ?ratp(ratsimp(summand/(-1)^var), var) and hi = inf
    then block(
      [ratfun, new_var : ?gensym(), expr1],
      ss_print_message(1, "Trying ratfun -> psi ..."),
      expr1 : intosum(changevar(expr, new_var=var-lo+1, new_var, var)),
      ratfun : part(expr1, 1)/(-1)^new_var,
      if hipow(num(ratfun), new_var) <= hipow(denom(ratfun), new_var)-1 then (
        sm1 : ratfun_to_psi(subst(new_var=2*new_var, ratfun), new_var, 1, inf) -
              ratfun_to_psi(subst(new_var=2*new_var-1, ratfun), new_var, 1, inf))
      else sm1 : und),
  
    supcontext (ss_new_context),

    /*** Zeilberger algorithm ************************************************/
    if errcatch(
      if use_zeilberger and not(atom(sm1)) and not freeof_sum(sm1) then block(
        [summand:summand, var:var, lo:lo, hi:hi, nv: gensym(), supp],
        ss_print_message(1, "Trying with Zeilberger ..."),
        assume(var>lo), assume(var<hi),
        support : ss_support(summand, var),
        if atom(support[1]) and support[1]#minf then
          [summand, var, lo, hi]: args(intosum(
              changevar(apply('sum, [summand, var, lo, hi]), nv=var-support[1]+sum_min, nv, var)
              ))
        else if lo#sum_min then
          [summand, var, lo, hi]: args(intosum(
              changevar(apply('sum, [summand, var, lo, hi]), nv=var-lo+sum_min, nv, var)
              )),
        sm1 : ss_zeilb(summand, var, lo, hi),
        ss_print_message(1, "Zeilberger method returns:", sm1)
      )
    ) = [] then sm1 : expr,

    killcontext(ss_new_context),

    if sm1=false then
      sm1 : expr,

    /*** Check if upper bound can be inf.  **********************************
    block(
      [expr1: factor(minfactorial(factcomb(makefact(summand)))),
       support],
      support: ss_support(expr1, var),
      if support[2]<=hi then hi_hyper: inf),
    **************************************************************************/
      
    /*** Convert to hypergeometrical functions. ******************************/
    if not(atom(sm1)) and not( freeof_sum(sm1) ) and
       use_hypergeometric=true and hi=inf and lo#-inf and lo#minf then (
         ss_print_message(1, "Converting to hypergeometrical sum ..."),
         sm1 : to_hypergeometric(summand, var, lo, hi),
         ss_print_message(1, "hgfred method returns:", sm1)),


    if sm1=false then
      sm1 : expr,

    if not(atom(sm1)) and not( freeof_sum(sm1) ) and use_telescoping=true then (
      ss_primt_message(1, "Using telescoping ..."),
      sm1: telescoping_sum(summand, var, lo, hi),
      ss_primt_semmace(1, "telescoping method returns:", sm1)),

    if sm1=false then
      sm1 : expr,

    sm1)$

/*******************
 *
 * Check if we still have some sums in expr.
 *
 *******************/

freeof_sum(expr) :=
  if atom(expr) then true
  else if part(expr, 0)=nounify(sum) then false
  else if expr=[] then true
  else xreduce("and", map(freeof_sum, args(expr)))$

freeof_integrate(expr) :=
  if atom(expr) then true
  else if part(expr, 0)=nounify(integrate) then false
  else if expr=[] then true
  else xreduce("and", map(freeof_integrate, args(expr)))$

freeof_limit(expr) :=
  if atom(expr) then true
  else if part(expr, 0)=nounify(limit) then false
  else if expr=[] then true
  else xreduce("and", map(freeof_limit, args(expr)))$

/*******************
 *
 * The extended Gosper algorithm
 *
 *******************/

ss_linearp(expr, var) := block(
  [a,b],
  [a,b]: bothcoeff(expand(expr), var),
  if freeof(var, a) and freeof(var, b) then [a,b]
  else [])$

find_coeffs(expr, var) := block([coeffs],
  coeffs: ss_linearp(expr, var),
  if coeffs=[] then (
    if member(part(expr, 0), ["+", "-", "*", "/", gamma, "!", binomial])
      then apply(append, map(lambda([e], find_coeffs(e, var)), args(expr)))
    else if part(expr, 0)="^" and freeof(var, part(expr, 2))
      then find_coeffs(part(expr, 1), var)
    else if part(expr, 0)="^" and freeof(var, part(expr, 1))
      then find_coeffs(part(expr, 2), var)
    else
      error())
  else
  [coeffs[1]])$

find_mfold(expr, var) := block(
  [coeffs: find_coeffs(expr, var)],
  coeffs: map(denom, coeffs),
  xreduce(lambda([a,b], a*b/gcd(a,b)), coeffs))$

extended_nusum(expr, var, lo, hi) := block(
  [%m%: find_mfold(expr, var), exprm, tk, sk],
  exprm: subst(var=%m%*var, expr),
  tk: nusum(exprm, var, 1, var),
  if not freeof_sum(tk) then error(),
  sk: subst(var=var/%m%, tk),
  apply('sum, [sk, var, hi-%m%+1, hi]) - apply('sum, [sk, var, lo-%m%, lo-1]))$

/*******************
 *
 * This simplifies the sum using Zeilberger
 *
 *******************/

ss_zeilb(expr, %k%, lo, hi, [in_zr]) := block(
  [vars : delete(%k%, listofvars(expr)), %n%, eq, sm, zb, deg,
   cond, eq_rhs, cert, %i%, expr1, ihom, support, sum_min:sum_min,
   upper_bound_implicit : false, lower_bound_implicit : false,
   solve_rec_warn : false, warnings:false, Gosper_in_Zeilberger:false,
   cont],

  if lo=-inf then lo:minf,
  
  /* Convert binomials to factorials. */
  expr1 : factor(minfactorial(factcomb(makefact(expr)))),
  ss_print_message(2, "Summand:", expr),
  ss_print_message(2, "Changed to:", expr1),

  /* We need expr to be hypergeometric in at least two variables. */
  /* We prefer the second variable to appear in bounds. */
  if length(in_zr)=0 then (
    if length(vars)<1 then (
      ss_print(3, "Not enough variables"),
      return(false)),
    if length(listofvars(hi))>0 then %n% : first(listofvars(hi))
    else if length(listofvars(lo))>0 then %n% : first(listofvars(lo))
    else %n% : vars[1])
  else
    %n% : in_zr[1],

  /*  Find support. */
  assume(%k%>lo), assume(%k%<hi),
  support : ss_support(expr1, %k%),
  support : [if numberp(support[1]) then ceiling(support[1]) else support[1],
             if numberp(support[2]) then floor(support[2])   else support[2]],

  if support[2]<lo or support[1]>hi then return(0),

  /* Check if bounds are implicit. */
  if ss_max(lo, support[1])=support[1] then lower_bound_implicit : true,
  if ss_min(hi, support[2])=support[2] then upper_bound_implicit : true,

  if lo=minf then lo : support[1],
  if hi=inf then hi : support[2],
  
  ss_print_message(2, "Found support:", support),
  if numberp(support[1]) then sum_min:max(support[1], lo),

  /* We don't handle sums over infinite support yet! */
  if (support[1]=minf and lower_bound_implicit) or
     (support[2]=inf and upper_bound_implicit) then (
    ss_print_message(3, "Support not finite!"),
    return(false)),

  /* Find the recurrence for the sum. */
  zb : Zeilberger(expr1, %k%, %n%),
  ss_print_message(3, "Zeilberger returns:", zb),
  if length(zb)=0 then error(),
  if not(listp(zb[1])) then error(),
  deg : length(part(zb, 1, 2)),
  cert : part(zb, 1, 1),
  eq : part(zb, 1, 2) . makelist(sm[%n%+%i%], %i%, 0, deg-1),

  /* Find the initial conditions for recurrence. */
  cont: first(content(eq)),
  while subst(%n%=sum_min, cont)=0 do sum_min: sum_min+1,

  if subst(%n%=max(support[1], lo), cont)#0 or
     errcatch(
       cond : ss_zeilb_init(expr, %n%,
         max(support[1], lo), min(support[2], hi), max(support[1], lo), deg))=[] or
     not freeof_sum(cond) then (
       cond : ss_zeilb_init(expr, %n%, lo, hi, sum_min, deg))
  else (
    sum_min: max(support[1], lo)),

  /* Initial conditions should not contain sums. */
  if not freeof_sum(cond) then (
    ss_print_message(3, "Wrong initial conditions:", cond),
    return(false)),

  /* Find the right hand side of the sum recurrence. */
  ihom : minfactorial(makefact(cert*expr)),
  eq_rhs : 0,
  
  if not(upper_bound_implicit) then (
    for %i%:0 thru deg-1 do (
      eq_rhs : eq_rhs + part(zb, 1, 2, %i%+1)*
                  apply(sum, [subst(%n%=%n%+%i%, expr), %k%, hi+1, subst(%n%=%n%+%i%, hi)])),
    eq_rhs : eq_rhs + subst(%k%=hi+1, ihom)),

  if not(lower_bound_implicit) then (
    for %i%:0 thru deg-1 do (
      eq_rhs : eq_rhs + part(zb, 1, 2, %i%+1)*
                  apply(sum, [subst(%n%=%n%+%i%, expr), %k%, subst(%n%=%n%+%i%, lo), lo-1])),
    eq_rhs : eq_rhs - subst(%k%=lo, ihom)),

  eq_rhs : factor(minfactorial(factcomb(makefact(eq_rhs)))),

  /* Right hand side must be free of sums. */
  if not freeof_sum(eq_rhs) then (
    ss_print_message(3, "Recurrence contains sums!", eq_rhs),
    return(false)),

  eq : eq = eq_rhs,
  ss_print_message(2, "Degree of recurrence:", deg-1),
  ss_print_message(2, "Zeilberger recurrence:", eq),
  ss_print_message(2, "Initial conditions:", cond),

  if length(in_zr)>0 then return(eq),

  /* Solve the recurrence. */
  eq : apply(solve_rec, append([eq, sm[%n%]], cond)),
  ss_print_message(2, "Solving recurrence returns:", eq),
  if eq=false then return(false),
  if not freeof_sum(eq) then return(false),

  eq : ratsimp(minfactorial(makefact(rhs(eq)))),
  ss_print_message(4, "Simplified solution:", eq),

  /* Check the solution. */
  if check_sum(expr, %k%, %n%, lo, hi, deg, eq) then eq
  else false)$

ss_zeilb_init(expr, %n%, lo, hi, sum_min, deg) := block(
  [cond],
  cond : makelist(
    sm[%i%] =
    subst(%n%=%i%,
      apply('sum, [
        minfactorial(expr),
        %k%, lo, hi
      ]
      )
    ),
    %i%, sum_min, sum_min + deg - 2),
  cond : factor(minfactorial(simplify_sum(cond))),
  cond)$

/*******************
 *
 * This returns the recurrence for the sum.
 *
 *******************/

summand_to_rec(expr, k, n) := block(
  [zr, linsolvewarn:false, lo:minf, hi:inf],
  
  if listp(k) then (
    lo : k[2],
    hi : k[3],
    k : k[1]),

  supcontext('ss_context),

  if errcatch(
    zr : ss_zeilb(expr, k, lo, hi, n)
  ) = [] then zr : 'failed,

  killcontext('ss_context),

  zr)$

/*******************
 *
 * Check the result - we may get something wrong!
 *
 *******************/

check_sum(expr, %k%, %n%, lo, hi, deg, sm) :=
  if not zeilberger_check then true
  else catch(
    block(
      [%i%, tmp_sum, real_sum, simpsum:true, sum_min:sum_min+deg],
      for %i%:sum_min thru deg+sum_min do(
        
        real_sum : minfactorial(factcomb(makefact(
              simplify_sum(subst(%n%=%i%, apply(sum, [expr, %k%, lo , hi])))
              ))),
        
        tmp_sum  : minfactorial(factcomb(makefact(subst(%n%=%i%, sm)))),
        dif : rectform(real_sum - tmp_sum),
        if not freeof_sum(real_sum) or (numberp(dif) and dif#0) then (
          if dif#0 then (
            ss_print_message(2, "Sum check failed with: ", 'i=%i%, 'tmp_sum=tmp_sum, 'dif=dif),
            throw(false))
          else
          print("Warning: sum check could not be completed!")))),
    true)$

/*******************
 *
 * This part checks for the support of expr in %k%
 *
 *******************/

ss_support(expr, %k%) := block(
  if freeof(%k%, expr) or expr=%k% then [minf, inf]
  else if member(part(expr, 0), ["+", "-"]) then
    lreduce(ss_union, map(lambda([u], ss_support(u,%k%)), args(expr)))
  else if part(expr, 0)="*" then
    lreduce(ss_intersection, map(lambda([u], ss_support(u,%k%)), args(expr)))
  else if part(expr, 0)="/" then
    lreduce(ss_intersection, map(lambda([u], ss_support(factcomb(u),%k%)), args(expr)))
  else if member(part(expr, 0), ["^"]) then ss_support(part(expr, 1), %k%)
  else if part(expr, 0)=binomial then ss_support_binomial(expr, %k%)
  else if part(expr, 0)="!" then ss_support_factorial(expr, %k%)
  else [minf, inf])$

/* we assume here that k!=0 if k<0 */
ss_support_factorial(expr, %k%) :=
  solve_lin_ineq(part(expr,1)>0, %k%)$

ss_support_binomial(expr, %k%) := block(
  [s1, s2],
  s1 : solve_lin_ineq(part(expr, 2)>0, %k%),
  s2 : solve_lin_ineq(part(expr, 2)<part(expr, 1), %k%),
  ss_intersection(s1, s2))$

/*******************
 *
 * solves inequality which is linear in k
 *
 *******************/

solve_lin_ineq(eq, k) := block(
  [eq1, bc, a, b],

  if op(eq)=">" then eq1 : lhs(eq) - rhs(eq)
  else eq1 : rhs(eq) - lhs(eq),

  bc : bothcoef(expand(eq1), k), a:bc[1], b:bc[2],

  if a=0 then [minf, inf]
  else if not freeof(k, b) then [minf, inf]
  else if not numberp(a) then [minf, inf]
  else if a>0 then [-b/a, inf]
  else [minf, -b/a])$

ss_union(l1, l2) := [ss_min(first(l1), first(l2)), ss_max(second(l1), second(l2))]$
ss_intersection(l1, l2) := [ss_max(first(l1), first(l2)), ss_min(second(l1), second(l2))]$

ss_max(e1, e2) := block(
  [pnz : asksign(e1-e2)],
  if pnz='pos or pnz='zero then e1
  else e2)$

ss_min(e1, e2) := block(
  [pnz : asksign(e1-e2)],
  if pnz='neg or pnz='zero then e1
  else e2)$

/********************
 *
 * splits sum
 *
 ********************/

expand_sum(expr, k%%, lo%%, hi%%) :=
  if not(atom(expr)) and part(expr, 0)="+" then
    map(lambda([u], apply(sum, [u, k%%, lo%%, hi%%])), expr)
  else
    apply(sum, [expr, k%%, lo%%, hi%%]);

split_sum(expr) :=
  block([sm%%: opsubst(nounify(sum)=expand_sum, expr)],
    ev(sm%%, expand_sum))$

/*******************
 *
 * converts sum(ratfun, var, 1, inf) to psi functions when denom(ratfun)
 * can be completely factored with gfactor.
 *
 *******************/

ratfun_to_psi(ratfun, var, lo, hi) := block(
  [pf, sum: 0, denom_f : factor_with_solve(denom(ratfun), var), max_root],

  pf : partfrac(num(ratfun)/denom_f, var),

  max_root: lmax(sublist(map(rhs, solve(denom_f, var)), numberp)),
  if (numberp(max_root) and numberp(lo)) then (
    while (lo < max_root) do (
      sum: sum+subst(var=lo, ratfun),
      lo: lo+1)),

  if inpart(pf, 0)="+" then pf: args(pf)
  else pf: [pf],

  ss_print_message(2, "Partial fractions", pf),

  for prt in pf do block(
    [term: numfactor(prt), exponent, a, b],
    local(a),

    ss_print_message(3, "Working on term", prt),

    prt : prt/term,
    term : term*num(prt),
    prt : denom(prt),

    if not(atom(prt)) and part(prt,0)="^" then (
      exponent: part(prt, 2),
      prt: part(prt, 1))
    else
      exponent: 1,

    ss_print_message(3, "Linear part", prt),

    a: ratsimp(bothcoef(expand(prt), var)),
    b: a[2], a: a[1],

    if not( freeof(var, a) and freeof(var, b) ) then error(),
    if hi=inf then (
      if exponent#1 then
        term: term*(zeta(exponent) -
                    gen_harmonic_number(exponent, subst(var=lo-1, prt/a)))/a^exponent
      else
        term: -term*gen_harmonic_number(exponent, subst(var=lo-1, prt/a))/a^exponent
    )
    else
      term: term*(gen_harmonic_number(exponent, subst(var=hi, prt/a)) -
                  gen_harmonic_number(exponent, subst(var=lo-1, prt/a)))/a^exponent,

    ss_print_message(3, "Corresponding term in sum", term),

    sum: sum+term),

  sum)$

factor_with_solve(expr, n) := block(
  [sol, fac, expr1],
  sol : solve(expr, n),
  expr : ratexpand(expr),
  fac : ratcoef(expr, n, hipow(expr, n)),
  for i:1 thru length(sol) do (
    if not(freeof(n, rhs(sol[i]))) then error(),
    fac : fac * (n - rhs(sol[i]))^multiplicities[i]),
  fac)$

/*******************
 *
 * Reduce using hgfred
 *
 *******************/

to_hypergeometric(expr, var, lo, hi) := block(
  [quo, upper, lower, a:[], b:[], x, c, warnings:false],

  for i:1 thru 100 while subst(var=lo, expr)=0 do lo : lo+1,
  expr:subst(var=var+lo, expr),

  quo : ratsimp(shiftQuo(factor(makefact(expr)*var!), var)),
  if not(?ratp(quo, var)) then return(false),
  
  ss_print_message(2, "Shift quotient", quo),
  
  upper : -map(rhs, solve(num(quo), var)),
  if not(every(lambda([u], freeof(var, u)), upper)) then return(false),
  for i:1 thru length(upper) do (
    for j:1 thru multiplicities[i] do
      a : cons(upper[i], a)),
  ss_print_message(2, "a=", a),
  
  lower : -map(rhs, solve(denom(quo), var)),
  if not(every(lambda([u], freeof(var, u)), lower)) then return(false),
  for i:1 thru length(lower) do (
    for j:1 thru multiplicities[i] do
      b : cons(lower[i], b)),

  ni_coeffs: sublist(append(upper, lower), lambda([ni], is(integerp(ni) and ni<0))),
  if ni_coeffs#[] then block(
    [use_simpsum:false, use_harmonic:false, use_integral:false,
     use_ratfun:false, use_gosper:false, use_zeilberger:false,
     use_telescoping:false, min_ni: lmin(ni_coeffs)],
    apply('sum, [expr, var, lo, -min_ni - 1]) + simplify_sum(apply(sum, [expr, var, -min_ni, hi])))
  else to_hypergeometric1(expr, var, lo, hi))$


to_hypergeometric1(expr, var, lo, hi) := block(
  [quo, upper, lower, a:[], b:[], x, c, warnings:false, besselexpand:true],

  for i:1 thru 100 while subst(var=lo, expr)=0 do lo : lo+1,
/*  expr:subst(var=var+lo, expr),*/
  
  quo : ratsimp(shiftQuo(factor(makefact(expr)*var!), var)),
  if not(?ratp(quo, var)) then return(false),

  ss_print_message(2, "Shift quotient", quo),
  quolim: limit(quo/(var+1), var, inf),
  if freeof_limit(quolim) and abs(quolim)>1 then error("Sum is divergent!"),
 
  upper : -map(rhs, solve(num(quo), var)),
  if not(every(lambda([u], freeof(var, u)), upper)) then return(false),
  for i:1 thru length(upper) do (
    for j:1 thru multiplicities[i] do
      a : cons(upper[i], a)),
  ss_print_message(2, "a=", a),
  
  lower : -map(rhs, solve(denom(quo), var)),
  if not(every(lambda([u], freeof(var, u)), lower)) then return(false),
  for i:1 thru length(lower) do (
    for j:1 thru multiplicities[i] do
      b : cons(lower[i], b)),
  ss_print_message(2, "b=", b),
  
  x : ratsimp(quo / apply("*", map(lambda([u], var+u), a)) *
                    apply("*", map(lambda([u], var+u), b))),
  ss_print_message(2, "x=", x),
  
  c : subst(var=0, expr),
  ss_print_message(2, "c=", c),
  if c=0 then return(false),

  ratsimp(c*hgfred(a,b,x)))$

/*******************
 *
 * harmonic_number and gen_harmonic_number
 *
 * harmonic_number(n) = sum(1/i, i, 1, n)
 * gen_harmonic_number(n,k) = sum(1/i^k, i, 1, n)
 *
 *******************/

define_variable(harmonic_number_expand, false, boolean)$

simp_harmonic_number(x__):=
  if x__=0 then 0
  else if integerp(x__) and x__<1 then error("Zero to negative power computed.") 
  else if integerp(x__) then num_harmonic_number(1, x__)
  else if numberp(x__) or imagpart(x__)#0 then psi[0](x__+1) + %gamma
  else block(
    [a, b, var, k%],
    if harmonic_number_expand then (
      [a,b]:split_integer_part(x__),
      if harmonic_number_expand and b>0 then
        simpfuncall('harmonic_number,a) + apply('sum, [1/k%, k%, a+1, a+b])
      else simpfuncall('harmonic_number, x__))
    else simpfuncall('harmonic_number, x__))$

num_harmonic_number(l, h) :=
    if h<l then 0
    else if h=l then 1/l
    else if h-l<50 then sum(1/i, i, l, h)
    else block(
        [mid: floor((l+h)/2)],
        num_harmonic_number(l, mid) +
        num_harmonic_number(mid+1, h))$

simplifying('harmonic_number,'simp_harmonic_number)$

simp_gen_harmonic_number(exp__, x__):=
  if x__=0 then 0
  else if integerp(x__) and x__<1 then error("Zero to negative power computed.")
  else if exp__=1 then harmonic_number(x__)
  else if x__>=inf then zeta(exp__)
  else if integerp(x__) and integerp(exp__) then num_gen_harmonic_number(exp__, 1, x__)
  else if integerp(x__) then sum(1/i^exp__, i, 1, x__)
  else if (numberp(x__) and numberp(exp__)) or imagpart(x__)#0 then
    (-1)^(exp__+1)/(exp__-1)!*(psi[exp__-1](x__+1)-psi[exp__-1](1))
  else block(
    [a, b, var, k%],
    if harmonic_number_expand then (
      [a,b]:split_integer_part(x__),
      if harmonic_number_expand and b>0 then
        simpfuncall('gen_harmonic_number,exp__,a) + apply('sum, [1/k%^exp__, k%, a+1, a+b])
      else simpfuncall('gen_harmonic_number, exp__, x__))
    else simpfuncall('gen_harmonic_number, exp__, x__))$

num_gen_harmonic_number(a, l, h) :=
    if h<l then 0
    else if h=l then 1/l
    else if h-l<50 then sum(1/i^a, i, l, h)
    else block(
        [mid: floor((l+h)/2)],
        num_gen_harmonic_number(a, l, mid) +
        num_gen_harmonic_number(a, mid+1, h))$

simplifying('gen_harmonic_number,'simp_gen_harmonic_number)$

get_harmonic_number_args(expr) :=
  if atom(expr) then {}
  else if part(expr, 0)=harmonic_number then {[1, part(expr, 1)]}
  else if part(expr, 0)=gen_harmonic_number then {[part(expr, 1), part(expr, 2)]}
  else xreduce(union, map(get_harmonic_number_args, args(expr)))$

split_integer_part(expr) :=
  if integerp(expr) then [0,expr]
  else if atom(expr) then [expr,0]
  else if part(expr,0)="+" then block(
    [a:0,b:0],
    for arg in args(expr) do (
      if integerp(arg) then b:b+arg
      else a:a+arg),
    [a,b])
  else [expr, 0]$

harmonic_to_psi(expr) :=
  opsubst([
    harmonic_number=lambda([x__], psi[0](x__+1)+%gamma),
    gen_harmonic_number=lambda([exp__, x__],
      (-1)^(exp__+1)/(exp__-1)!*(psi[exp__-1](x__+1)-psi[exp__-1](1)))],
    expr)$

/*******************
 *
 * sum_by_parts
 *
 *******************/

sum_by_parts(fkgk, gk, k__, m__, n__) := block(
    [fk:fkgk/gk, j__:?gensym(), gj, oth, harmonic_number_expand:true],
    gj: subst(k__=j__, gk),
    oth: (subst(k__=k__+1, fk) - fk) * apply('sum, [gj, j__, m__, k__]),
    subst(k__=n__+1, fk) * apply('sum, [gj, j__, m__, n__]) - apply('sum, [oth, k__, m__, n__]))$


/*******************
 *
 * sum_by_integral:
 * - currently only handles harmonic_number, but could be extended to other functions.
 *
 *******************/

define_variable(sum_by_integral_transforms, [], list)$

sum_by_integral(expr, var, lo, hi) :=
  /* Integral representation of harmonic_number */
  if catch(
    scanmap(
      lambda([u], if not atom(u) and member(part(u,0), [harmonic_number]) then throw(true)),
      expr,
      bottomup))=true then
  block(
    [expr1, x_:?gensym()],
    
    supcontext (concat('sum_by_integral, simplify_sum_depth)),
    assume(x_>0, x_<1, var>=lo, var<=hi),

    expr1 : opsubst(harmonic_number=lambda([u], (1-x_^u)/(1-x_)), expr),
    if errcatch(
      expr1 : simplify_sum(split_sum(expand(apply('sum, [expr1, var, lo, hi]))))
      ) = [] then expr1 : false,

    killcontext(concat('sum_by_integral, simplify_sum_depth)),

    for tr in sum_by_integral_transforms do (
      expr1 : apply(tr, [expr1])),
    
    if expr1 # false then expr1: integrate(expr1, x_, 0, 1)
    else expr1 : apply('sum, [expr, var, lo, hi]),
    
    if freeof_integrate(expr1) and freeof_limit(expr1) then expr1
    else apply('sum, [expr, var, lo, hi]))

  else apply('sum, [expr, var, lo, hi])$

/*****
 * recognize sums of the form sum(f(n) - f(n+1), n, a, b) where f(n)=f1(n)/f2(n) for
 * simple functions f1 and f2.
 ****/

find_f2(expr) :=
  if mapatom(expr) then (if subvarp(expr) then [expr] else [])
  else if member(part(expr, 0), ["+", "-", "/", "*"]) then
    apply(append, map(find_f2, args(expr)))
  else [expr]$

find_f1(expr, f2, var) := block(
  [f21: ratsimp(subst(var=var+1, f2)), f1, f11, algebraic:true],
  expr: ratsimp(expr*f2*f21),
  f1: coeff(ratsimp(expr), f21),
  f11: subst(var=var+1, f1),
  expr: radcan(expr - f21*f1 + f2*f11),
  if expr=0 then f1
  else false)$

find_quotient(expr, var) := block(
  [f2_list, f1, quotient: false],
  f2_list: find_f2(expr),
  for f2 in f2_list while quotient=false do (
    f1: find_f1(expr, f2, var),
    if f1#false then
      quotient: f1/f2),
  quotient)$

telescoping_sum(expr, var, lo, hi) := block(
  [quotient: find_quotient(expr, var)],
  if quotient#false then
    (if lo=minf then limit(quotient, var, lo) else subst(var=lo, quotient)) -
    (if hi=inf then limit(quotient, var, hi) else subst(var=hi+1, quotient))
  else false)$

eval_when(batch,
          ttyoff : false,
          nolabels : false)$