1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
|
/*****************************************************************************
* *
* ************************************************************************* *
* *** *** *
* *** * simplify_sum * *** *
* *** *** *
* *** This file implements simplify_sum function for simplification *** *
* *** of sums. *** *
* *** The methods used by simplify_sum: *** *
* *** 1. internal simplification using simpsum=true *** *
* *** 2. Gosper algorithm *** *
* *** 3. rational summation with conversion to psi functions *** *
* *** 4. Zeilberger algorithm *** *
* *** 5. conversion to hypergeometrical sums, reduced by hgfred. *** *
* *** *** *
* *** Author: Andrej Vodopivec <andrejv@users.sourceforge.net> *** *
* *** Licence: GPL *** *
* *** *** *
* ************************************************************************* *
* *
* *
* Demo: *
* *
* (%i6) s : simplify_sum(sum(((-1)^k*x*binom(n,k))/(x+k),k,0,n))$ *
* (%i7) factcomb(s); *
* (%o7) (n!*x!)/(x+n)! *
* *
* (%i8) simplify_sum(sum((-1)^k*binom(x-2*k,n-k)*binom(x-k+1,k),k,0,n)); *
* Is x - 2 * n positive, negative, or zero? pos; *
* Is x - n + 1 positive, negative, or zero? pos; *
* (%o8) ((-1)^n+1)/2 *
* *
* (%i9) simplify_sum(sum(binom(n,k)/(k+1),k,0,n)); *
* (%o9) (2*2^n-1)/(n+1) *
* *
* More examples with load("simplify_sum_test"); *
* *
*****************************************************************************/
load("zeilberger")$
load("solve_rec/solve_rec")$
load("simplifying.lisp")$
load("opsubst")$
eval_when(batch,
ttyoff : true,
nolabels : true)$
put('simplify_sum, 1.0, 'version)$
define_variable(zeilberger_check, true, boolean)$
define_variable(sum_min, 0, any)$
define_variable(use_simpsum, true, boolean)$
define_variable(use_harmonic, true, boolean)$
define_variable(use_integral, true, boolean)$
define_variable(use_gosper, true, boolean)$
define_variable(use_ratfun, true, boolean)$
define_variable(use_zeilberger, true, boolean)$
define_variable(use_hypergeometric, true, boolean)$
define_variable(use_telescoping, true, boolean)$
define_variable(simplify_sum_depth, 0, fixnum)$
define_variable(simplify_sum_max_depth, 3, fixnum)$
declare(simplify_sum, evfun)$
declare(split_sum, evfun)$
/*******************
*
* Debugging.
*
*******************/
define_variable(verbose_level, 0, fixnum)$
ss_print_message(level, [mess]) :=
if verbose_level>=level then (
apply(print, mess))$
/*******************
*
* simplify_sum(expr) : tries to simplify all sums in expr.
*
*******************/
simplify_sum(expr) :=
/* Check if we have a sum - if not then simplify all arguments. */
if mapatom(expr) then expr
else if part(expr, 0)#nounify(sum) then map(simplify_sum, expr)
/* Check for sum(expr, var, min, inf) */
else if (part(expr, 3)=-inf or part(expr, 3)=minf) and part(expr, 4)=inf then block(
[summand, var_, lo, hi],
[summand, var_, lo, hi]: args(expr),
simplify_sum(apply('sum, [summand, var_, 0, inf])) +
simplify_sum(apply('sum, [subst(var_=-var_, summand), var_, 1, inf])))
/* Check for sum(expr, var, minf, hi) */
else if part(expr, 3)=-inf or part(expr, 3)=minf then (
simplify_sum(apply('sum, [subst(var_=-var_, summand), var_, -hi, inf])))
/* Trigonometric sums */
else if catch(
scanmap(
lambda([u], if not atom(u) and member(part(u,0), [sin, cos, sinh, cosh]) then throw(true)),
expr,
bottomup))=true then block(
[sm1 : simplify_sum(split_sum(expand(exponentialize(expr))))],
if freeof_sum(sm1) then trigsimp(rectform(sm1))
else expr)
/* Sums with Fibonacci numbers */
else if catch(
scanmap(
lambda([u], if not atom(u) and part(u,0)=fib then throw(true)),
expr,
bottomup))=true then block(
[sm1: simplify_sum(split_sum(expand(fibtophi(expr))))],
if freeof_sum(sm1) then block(
[algebraic:true],
ratsimp(sm1)))
/* Check if summand is a logarighm */
else if not(atom(part(expr, 1))) and part(expr, 1, 0)=log and part(expr, 3)#minf then block(
[%up, %sub],
if part(expr, 4)=inf then (
%sub: log(simplify_product(apply(product,
[exp(part(expr, 1)), part(expr, 2), part(expr, 3), %up]))),
%sub: limit(%sub, %up, inf),
if not(freeof(inf, %sub) and freeof(minf, %sub)) then error("Sum is divergent!")
elseif freeof_limit(%sub) then %sub
else expr)
else (
log(simplify_product(apply(product, cons(exp(part(expr, 1)), rest(args(expr))))))))
/* Main summation code starts here */
else block(
[simpsum:false,
summand : ratsimp(part(expr, 1)),
var : part(expr, 2),
lo : part(expr, 3),
hi : part(expr, 4),
sm1 : expr,
linsolvewarn:false,
simplify_sum_depth:simplify_sum_depth+1,
ss_new_context: concat('ss_context, simplify_sum_depth)],
/*** Prevent possible infinite recursion. ***************************/
if simplify_sum_depth>simplify_sum_max_depth then return(expr),
/*** Simplify the summand *******************************************/
/* make sure we dont have contexts from previous runs */
if member(ss_new_context, contexts) then
killcontext(ss_new_context),
supcontext (ss_new_context),
if lo#minf and lo#-inf then assume(var>=lo),
if hi#inf then assume(var<=hi),
summand : simplify_sum(summand),
killcontext(ss_new_context),
expr : intosum(apply(sum, [summand, var, lo, hi])),
/*** Default maxima simplification. *********************************/
if use_simpsum=true then (
ss_print_message(1, "Trying with simpsum=true ..."),
sm1 : ev(apply(sum, [summand, var, lo, hi]), simpsum = true),
ss_print_message(1, "sum with simpsum=true returns:", sm1)),
/*** Sums with harmonic_number(n) by parts. *************************/
if use_harmonic=true and not freeof_sum(sm1) and hi#inf then block(
[a, b, harmonic_number_args: get_harmonic_number_args(summand), harmonic_part],
if length(harmonic_number_args)>0 then (
harmonic_part : apply(gen_harmonic_number, first(harmonic_number_args)),
[a, b]:bothcoef(summand, harmonic_part),
ss_print_message(1, "Trying with sum_by_parts"),
ss_print_message(2, "harmonic_number by parts"),
ss_print_message(2, "Coefficients", a, b),
if a#0 then
sm1: simplify_sum(sum_by_parts(summand-b, a, var, lo, hi)) +
simplify_sum(apply('sum, [b, var, lo, hi]))),
ss_print_message(1, "sum_by_parts returns", sm1)),
/*** Try with integral representation *******************************/
if use_integral=true and not freeof_sum(sm1) then (
ss_print_message(1, "Trying with integral representation."),
sm1 : sum_by_integral(summand, var, lo, hi),
ss_print(1, "Integral representation returns", sm1)),
/*** Now let's try the Gosper algorithm *****************************/
if errcatch(
if use_gosper and not(atom(sm1)) and not freeof_sum(sm1) then block(
[hi1 : ?gensym(), lo1 : ?gensym()],
ss_print_message(1, "Trying with Gosper ..."),
sm1 : block([ttyoff:ttyoff], nusum(summand, var, lo1, hi1)),
if freeof_sum(sm1) then (
ss_print_message(1, "Gosper returns:", sm1),
if lo=minf or lo=-inf then
sm1 : limit(sm1, lo1, lo)
else
sm1 : subst(lo1=lo, sm1),
if hi=inf then
sm1 : limit(sm1, hi1, hi)
else
sm1 : subst(hi1=hi, sm1),
if not freeof_limit(sm1) or not freeof('und, sm1) then sm1: expr)
else sm1 : expr)) = [] then sm1 : expr,
/*** Try the extended Gosper algorithm ******************************/
if errcatch(
if use_gosper and not(atom(sm1)) and not freeof_sum(sm1) then block(
[hi1 : ?gensym(), lo1 : ?gensym()],
ss_print_message(1, "Trying with extended Gosper ..."),
sm1 : block([ttyoff:ttyoff], extended_nusum(summand, var, lo1, hi1)),
if freeof_sum(sm1) then (
ss_print_message(1, "Extended Gosper returns:", sm1),
if lo=minf or lo=-inf then
sm1 : limit(sm1, lo1, lo)
else
sm1 : subst(lo1=lo, sm1),
if hi=inf then
sm1 : limit(sm1, hi1, hi)
else
sm1 : subst(hi1=hi, sm1),
if not freeof_limit(sm1) then sm1 : expr)
else sm1 : expr)) = [] then sm1 : expr,
/*** Try converting the sum to finite sum of psi functions **********/
if use_ratfun and not(atom(sm1)) and not( freeof_sum(sm1) ) and ?ratp(summand, var)
then block(
[ratfun, expr1: expr],
ss_print_message(1, "Trying ratfun -> psi ..."),
ratfun : part(expr1, 1),
if hi=inf and hipow(num(ratfun), var) > hipow(denom(ratfun), var)-2 then
error("Sum is divergent!"),
polypart : first(divide(num(ratfun), denom(ratfun), var)),
expr1 : intosum(substpart(ratsimp(ratfun - polypart), expr1, 1)),
ss_print_message(3, "Polynomial part", polypart),
ss_print_message(3, "Without polynomial part", expr1),
/* polynomial part */
sm1 : simplify_sum(apply(sum, [polypart, var, lo, hi])),
ss_print_message(4, "Polynomial part contributes", sm1),
/* fractional part */
ratfun : part(expr1, 1),
sm1 : sm1 + ratfun_to_psi(ratfun, var, lo, hi)),
/*** check for sum((-1)^n*ratfun, n, lo, inf); ****************************/
if use_ratfun and not(atom(sm1)) and not( freeof_sum(sm1) ) and
?ratp(ratsimp(summand/(-1)^var), var) and hi = inf
then block(
[ratfun, new_var : ?gensym(), expr1],
ss_print_message(1, "Trying ratfun -> psi ..."),
expr1 : intosum(changevar(expr, new_var=var-lo+1, new_var, var)),
ratfun : part(expr1, 1)/(-1)^new_var,
if hipow(num(ratfun), new_var) <= hipow(denom(ratfun), new_var)-1 then (
sm1 : ratfun_to_psi(subst(new_var=2*new_var, ratfun), new_var, 1, inf) -
ratfun_to_psi(subst(new_var=2*new_var-1, ratfun), new_var, 1, inf))
else sm1 : und),
supcontext (ss_new_context),
/*** Zeilberger algorithm ************************************************/
if errcatch(
if use_zeilberger and not(atom(sm1)) and not freeof_sum(sm1) then block(
[summand:summand, var:var, lo:lo, hi:hi, nv: gensym(), supp],
ss_print_message(1, "Trying with Zeilberger ..."),
assume(var>lo), assume(var<hi),
support : ss_support(summand, var),
if atom(support[1]) and support[1]#minf then
[summand, var, lo, hi]: args(intosum(
changevar(apply('sum, [summand, var, lo, hi]), nv=var-support[1]+sum_min, nv, var)
))
else if lo#sum_min then
[summand, var, lo, hi]: args(intosum(
changevar(apply('sum, [summand, var, lo, hi]), nv=var-lo+sum_min, nv, var)
)),
sm1 : ss_zeilb(summand, var, lo, hi),
ss_print_message(1, "Zeilberger method returns:", sm1)
)
) = [] then sm1 : expr,
killcontext(ss_new_context),
if sm1=false then
sm1 : expr,
/*** Check if upper bound can be inf. **********************************
block(
[expr1: factor(minfactorial(factcomb(makefact(summand)))),
support],
support: ss_support(expr1, var),
if support[2]<=hi then hi_hyper: inf),
**************************************************************************/
/*** Convert to hypergeometrical functions. ******************************/
if not(atom(sm1)) and not( freeof_sum(sm1) ) and
use_hypergeometric=true and hi=inf and lo#-inf and lo#minf then (
ss_print_message(1, "Converting to hypergeometrical sum ..."),
sm1 : to_hypergeometric(summand, var, lo, hi),
ss_print_message(1, "hgfred method returns:", sm1)),
if sm1=false then
sm1 : expr,
if not(atom(sm1)) and not( freeof_sum(sm1) ) and use_telescoping=true then (
ss_primt_message(1, "Using telescoping ..."),
sm1: telescoping_sum(summand, var, lo, hi),
ss_primt_semmace(1, "telescoping method returns:", sm1)),
if sm1=false then
sm1 : expr,
sm1)$
/*******************
*
* Check if we still have some sums in expr.
*
*******************/
freeof_sum(expr) :=
if atom(expr) then true
else if part(expr, 0)=nounify(sum) then false
else if expr=[] then true
else xreduce("and", map(freeof_sum, args(expr)))$
freeof_integrate(expr) :=
if atom(expr) then true
else if part(expr, 0)=nounify(integrate) then false
else if expr=[] then true
else xreduce("and", map(freeof_integrate, args(expr)))$
freeof_limit(expr) :=
if atom(expr) then true
else if part(expr, 0)=nounify(limit) then false
else if expr=[] then true
else xreduce("and", map(freeof_limit, args(expr)))$
/*******************
*
* The extended Gosper algorithm
*
*******************/
ss_linearp(expr, var) := block(
[a,b],
[a,b]: bothcoeff(expand(expr), var),
if freeof(var, a) and freeof(var, b) then [a,b]
else [])$
find_coeffs(expr, var) := block([coeffs],
coeffs: ss_linearp(expr, var),
if coeffs=[] then (
if member(part(expr, 0), ["+", "-", "*", "/", gamma, "!", binomial])
then apply(append, map(lambda([e], find_coeffs(e, var)), args(expr)))
else if part(expr, 0)="^" and freeof(var, part(expr, 2))
then find_coeffs(part(expr, 1), var)
else if part(expr, 0)="^" and freeof(var, part(expr, 1))
then find_coeffs(part(expr, 2), var)
else
error())
else
[coeffs[1]])$
find_mfold(expr, var) := block(
[coeffs: find_coeffs(expr, var)],
coeffs: map(denom, coeffs),
xreduce(lambda([a,b], a*b/gcd(a,b)), coeffs))$
extended_nusum(expr, var, lo, hi) := block(
[%m%: find_mfold(expr, var), exprm, tk, sk],
exprm: subst(var=%m%*var, expr),
tk: nusum(exprm, var, 1, var),
if not freeof_sum(tk) then error(),
sk: subst(var=var/%m%, tk),
apply('sum, [sk, var, hi-%m%+1, hi]) - apply('sum, [sk, var, lo-%m%, lo-1]))$
/*******************
*
* This simplifies the sum using Zeilberger
*
*******************/
ss_zeilb(expr, %k%, lo, hi, [in_zr]) := block(
[vars : delete(%k%, listofvars(expr)), %n%, eq, sm, zb, deg,
cond, eq_rhs, cert, %i%, expr1, ihom, support, sum_min:sum_min,
upper_bound_implicit : false, lower_bound_implicit : false,
solve_rec_warn : false, warnings:false, Gosper_in_Zeilberger:false,
cont],
if lo=-inf then lo:minf,
/* Convert binomials to factorials. */
expr1 : factor(minfactorial(factcomb(makefact(expr)))),
ss_print_message(2, "Summand:", expr),
ss_print_message(2, "Changed to:", expr1),
/* We need expr to be hypergeometric in at least two variables. */
/* We prefer the second variable to appear in bounds. */
if length(in_zr)=0 then (
if length(vars)<1 then (
ss_print(3, "Not enough variables"),
return(false)),
if length(listofvars(hi))>0 then %n% : first(listofvars(hi))
else if length(listofvars(lo))>0 then %n% : first(listofvars(lo))
else %n% : vars[1])
else
%n% : in_zr[1],
/* Find support. */
assume(%k%>lo), assume(%k%<hi),
support : ss_support(expr1, %k%),
support : [if numberp(support[1]) then ceiling(support[1]) else support[1],
if numberp(support[2]) then floor(support[2]) else support[2]],
if support[2]<lo or support[1]>hi then return(0),
/* Check if bounds are implicit. */
if ss_max(lo, support[1])=support[1] then lower_bound_implicit : true,
if ss_min(hi, support[2])=support[2] then upper_bound_implicit : true,
if lo=minf then lo : support[1],
if hi=inf then hi : support[2],
ss_print_message(2, "Found support:", support),
if numberp(support[1]) then sum_min:max(support[1], lo),
/* We don't handle sums over infinite support yet! */
if (support[1]=minf and lower_bound_implicit) or
(support[2]=inf and upper_bound_implicit) then (
ss_print_message(3, "Support not finite!"),
return(false)),
/* Find the recurrence for the sum. */
zb : Zeilberger(expr1, %k%, %n%),
ss_print_message(3, "Zeilberger returns:", zb),
if length(zb)=0 then error(),
if not(listp(zb[1])) then error(),
deg : length(part(zb, 1, 2)),
cert : part(zb, 1, 1),
eq : part(zb, 1, 2) . makelist(sm[%n%+%i%], %i%, 0, deg-1),
/* Find the initial conditions for recurrence. */
cont: first(content(eq)),
while subst(%n%=sum_min, cont)=0 do sum_min: sum_min+1,
if subst(%n%=max(support[1], lo), cont)#0 or
errcatch(
cond : ss_zeilb_init(expr, %n%,
max(support[1], lo), min(support[2], hi), max(support[1], lo), deg))=[] or
not freeof_sum(cond) then (
cond : ss_zeilb_init(expr, %n%, lo, hi, sum_min, deg))
else (
sum_min: max(support[1], lo)),
/* Initial conditions should not contain sums. */
if not freeof_sum(cond) then (
ss_print_message(3, "Wrong initial conditions:", cond),
return(false)),
/* Find the right hand side of the sum recurrence. */
ihom : minfactorial(makefact(cert*expr)),
eq_rhs : 0,
if not(upper_bound_implicit) then (
for %i%:0 thru deg-1 do (
eq_rhs : eq_rhs + part(zb, 1, 2, %i%+1)*
apply(sum, [subst(%n%=%n%+%i%, expr), %k%, hi+1, subst(%n%=%n%+%i%, hi)])),
eq_rhs : eq_rhs + subst(%k%=hi+1, ihom)),
if not(lower_bound_implicit) then (
for %i%:0 thru deg-1 do (
eq_rhs : eq_rhs + part(zb, 1, 2, %i%+1)*
apply(sum, [subst(%n%=%n%+%i%, expr), %k%, subst(%n%=%n%+%i%, lo), lo-1])),
eq_rhs : eq_rhs - subst(%k%=lo, ihom)),
eq_rhs : factor(minfactorial(factcomb(makefact(eq_rhs)))),
/* Right hand side must be free of sums. */
if not freeof_sum(eq_rhs) then (
ss_print_message(3, "Recurrence contains sums!", eq_rhs),
return(false)),
eq : eq = eq_rhs,
ss_print_message(2, "Degree of recurrence:", deg-1),
ss_print_message(2, "Zeilberger recurrence:", eq),
ss_print_message(2, "Initial conditions:", cond),
if length(in_zr)>0 then return(eq),
/* Solve the recurrence. */
eq : apply(solve_rec, append([eq, sm[%n%]], cond)),
ss_print_message(2, "Solving recurrence returns:", eq),
if eq=false then return(false),
if not freeof_sum(eq) then return(false),
eq : ratsimp(minfactorial(makefact(rhs(eq)))),
ss_print_message(4, "Simplified solution:", eq),
/* Check the solution. */
if check_sum(expr, %k%, %n%, lo, hi, deg, eq) then eq
else false)$
ss_zeilb_init(expr, %n%, lo, hi, sum_min, deg) := block(
[cond],
cond : makelist(
sm[%i%] =
subst(%n%=%i%,
apply('sum, [
minfactorial(expr),
%k%, lo, hi
]
)
),
%i%, sum_min, sum_min + deg - 2),
cond : factor(minfactorial(simplify_sum(cond))),
cond)$
/*******************
*
* This returns the recurrence for the sum.
*
*******************/
summand_to_rec(expr, k, n) := block(
[zr, linsolvewarn:false, lo:minf, hi:inf],
if listp(k) then (
lo : k[2],
hi : k[3],
k : k[1]),
supcontext('ss_context),
if errcatch(
zr : ss_zeilb(expr, k, lo, hi, n)
) = [] then zr : 'failed,
killcontext('ss_context),
zr)$
/*******************
*
* Check the result - we may get something wrong!
*
*******************/
check_sum(expr, %k%, %n%, lo, hi, deg, sm) :=
if not zeilberger_check then true
else catch(
block(
[%i%, tmp_sum, real_sum, simpsum:true, sum_min:sum_min+deg],
for %i%:sum_min thru deg+sum_min do(
real_sum : minfactorial(factcomb(makefact(
simplify_sum(subst(%n%=%i%, apply(sum, [expr, %k%, lo , hi])))
))),
tmp_sum : minfactorial(factcomb(makefact(subst(%n%=%i%, sm)))),
dif : rectform(real_sum - tmp_sum),
if not freeof_sum(real_sum) or (numberp(dif) and dif#0) then (
if dif#0 then (
ss_print_message(2, "Sum check failed with: ", 'i=%i%, 'tmp_sum=tmp_sum, 'dif=dif),
throw(false))
else
print("Warning: sum check could not be completed!")))),
true)$
/*******************
*
* This part checks for the support of expr in %k%
*
*******************/
ss_support(expr, %k%) := block(
if freeof(%k%, expr) or expr=%k% then [minf, inf]
else if member(part(expr, 0), ["+", "-"]) then
lreduce(ss_union, map(lambda([u], ss_support(u,%k%)), args(expr)))
else if part(expr, 0)="*" then
lreduce(ss_intersection, map(lambda([u], ss_support(u,%k%)), args(expr)))
else if part(expr, 0)="/" then
lreduce(ss_intersection, map(lambda([u], ss_support(factcomb(u),%k%)), args(expr)))
else if member(part(expr, 0), ["^"]) then ss_support(part(expr, 1), %k%)
else if part(expr, 0)=binomial then ss_support_binomial(expr, %k%)
else if part(expr, 0)="!" then ss_support_factorial(expr, %k%)
else [minf, inf])$
/* we assume here that k!=0 if k<0 */
ss_support_factorial(expr, %k%) :=
solve_lin_ineq(part(expr,1)>0, %k%)$
ss_support_binomial(expr, %k%) := block(
[s1, s2],
s1 : solve_lin_ineq(part(expr, 2)>0, %k%),
s2 : solve_lin_ineq(part(expr, 2)<part(expr, 1), %k%),
ss_intersection(s1, s2))$
/*******************
*
* solves inequality which is linear in k
*
*******************/
solve_lin_ineq(eq, k) := block(
[eq1, bc, a, b],
if op(eq)=">" then eq1 : lhs(eq) - rhs(eq)
else eq1 : rhs(eq) - lhs(eq),
bc : bothcoef(expand(eq1), k), a:bc[1], b:bc[2],
if a=0 then [minf, inf]
else if not freeof(k, b) then [minf, inf]
else if not numberp(a) then [minf, inf]
else if a>0 then [-b/a, inf]
else [minf, -b/a])$
ss_union(l1, l2) := [ss_min(first(l1), first(l2)), ss_max(second(l1), second(l2))]$
ss_intersection(l1, l2) := [ss_max(first(l1), first(l2)), ss_min(second(l1), second(l2))]$
ss_max(e1, e2) := block(
[pnz : asksign(e1-e2)],
if pnz='pos or pnz='zero then e1
else e2)$
ss_min(e1, e2) := block(
[pnz : asksign(e1-e2)],
if pnz='neg or pnz='zero then e1
else e2)$
/********************
*
* splits sum
*
********************/
expand_sum(expr, k%%, lo%%, hi%%) :=
if not(atom(expr)) and part(expr, 0)="+" then
map(lambda([u], apply(sum, [u, k%%, lo%%, hi%%])), expr)
else
apply(sum, [expr, k%%, lo%%, hi%%]);
split_sum(expr) :=
block([sm%%: opsubst(nounify(sum)=expand_sum, expr)],
ev(sm%%, expand_sum))$
/*******************
*
* converts sum(ratfun, var, 1, inf) to psi functions when denom(ratfun)
* can be completely factored with gfactor.
*
*******************/
ratfun_to_psi(ratfun, var, lo, hi) := block(
[pf, sum: 0, denom_f : factor_with_solve(denom(ratfun), var), max_root],
pf : partfrac(num(ratfun)/denom_f, var),
max_root: lmax(sublist(map(rhs, solve(denom_f, var)), numberp)),
if (numberp(max_root) and numberp(lo)) then (
while (lo < max_root) do (
sum: sum+subst(var=lo, ratfun),
lo: lo+1)),
if inpart(pf, 0)="+" then pf: args(pf)
else pf: [pf],
ss_print_message(2, "Partial fractions", pf),
for prt in pf do block(
[term: numfactor(prt), exponent, a, b],
local(a),
ss_print_message(3, "Working on term", prt),
prt : prt/term,
term : term*num(prt),
prt : denom(prt),
if not(atom(prt)) and part(prt,0)="^" then (
exponent: part(prt, 2),
prt: part(prt, 1))
else
exponent: 1,
ss_print_message(3, "Linear part", prt),
a: ratsimp(bothcoef(expand(prt), var)),
b: a[2], a: a[1],
if not( freeof(var, a) and freeof(var, b) ) then error(),
if hi=inf then (
if exponent#1 then
term: term*(zeta(exponent) -
gen_harmonic_number(exponent, subst(var=lo-1, prt/a)))/a^exponent
else
term: -term*gen_harmonic_number(exponent, subst(var=lo-1, prt/a))/a^exponent
)
else
term: term*(gen_harmonic_number(exponent, subst(var=hi, prt/a)) -
gen_harmonic_number(exponent, subst(var=lo-1, prt/a)))/a^exponent,
ss_print_message(3, "Corresponding term in sum", term),
sum: sum+term),
sum)$
factor_with_solve(expr, n) := block(
[sol, fac, expr1],
sol : solve(expr, n),
expr : ratexpand(expr),
fac : ratcoef(expr, n, hipow(expr, n)),
for i:1 thru length(sol) do (
if not(freeof(n, rhs(sol[i]))) then error(),
fac : fac * (n - rhs(sol[i]))^multiplicities[i]),
fac)$
/*******************
*
* Reduce using hgfred
*
*******************/
to_hypergeometric(expr, var, lo, hi) := block(
[quo, upper, lower, a:[], b:[], x, c, warnings:false],
for i:1 thru 100 while subst(var=lo, expr)=0 do lo : lo+1,
expr:subst(var=var+lo, expr),
quo : ratsimp(shiftQuo(factor(makefact(expr)*var!), var)),
if not(?ratp(quo, var)) then return(false),
ss_print_message(2, "Shift quotient", quo),
upper : -map(rhs, solve(num(quo), var)),
if not(every(lambda([u], freeof(var, u)), upper)) then return(false),
for i:1 thru length(upper) do (
for j:1 thru multiplicities[i] do
a : cons(upper[i], a)),
ss_print_message(2, "a=", a),
lower : -map(rhs, solve(denom(quo), var)),
if not(every(lambda([u], freeof(var, u)), lower)) then return(false),
for i:1 thru length(lower) do (
for j:1 thru multiplicities[i] do
b : cons(lower[i], b)),
ni_coeffs: sublist(append(upper, lower), lambda([ni], is(integerp(ni) and ni<0))),
if ni_coeffs#[] then block(
[use_simpsum:false, use_harmonic:false, use_integral:false,
use_ratfun:false, use_gosper:false, use_zeilberger:false,
use_telescoping:false, min_ni: lmin(ni_coeffs)],
apply('sum, [expr, var, lo, -min_ni - 1]) + simplify_sum(apply(sum, [expr, var, -min_ni, hi])))
else to_hypergeometric1(expr, var, lo, hi))$
to_hypergeometric1(expr, var, lo, hi) := block(
[quo, upper, lower, a:[], b:[], x, c, warnings:false, besselexpand:true],
for i:1 thru 100 while subst(var=lo, expr)=0 do lo : lo+1,
/* expr:subst(var=var+lo, expr),*/
quo : ratsimp(shiftQuo(factor(makefact(expr)*var!), var)),
if not(?ratp(quo, var)) then return(false),
ss_print_message(2, "Shift quotient", quo),
quolim: limit(quo/(var+1), var, inf),
if freeof_limit(quolim) and abs(quolim)>1 then error("Sum is divergent!"),
upper : -map(rhs, solve(num(quo), var)),
if not(every(lambda([u], freeof(var, u)), upper)) then return(false),
for i:1 thru length(upper) do (
for j:1 thru multiplicities[i] do
a : cons(upper[i], a)),
ss_print_message(2, "a=", a),
lower : -map(rhs, solve(denom(quo), var)),
if not(every(lambda([u], freeof(var, u)), lower)) then return(false),
for i:1 thru length(lower) do (
for j:1 thru multiplicities[i] do
b : cons(lower[i], b)),
ss_print_message(2, "b=", b),
x : ratsimp(quo / apply("*", map(lambda([u], var+u), a)) *
apply("*", map(lambda([u], var+u), b))),
ss_print_message(2, "x=", x),
c : subst(var=0, expr),
ss_print_message(2, "c=", c),
if c=0 then return(false),
ratsimp(c*hgfred(a,b,x)))$
/*******************
*
* harmonic_number and gen_harmonic_number
*
* harmonic_number(n) = sum(1/i, i, 1, n)
* gen_harmonic_number(n,k) = sum(1/i^k, i, 1, n)
*
*******************/
define_variable(harmonic_number_expand, false, boolean)$
simp_harmonic_number(x__):=
if x__=0 then 0
else if integerp(x__) and x__<1 then error("Zero to negative power computed.")
else if integerp(x__) then num_harmonic_number(1, x__)
else if numberp(x__) or imagpart(x__)#0 then psi[0](x__+1) + %gamma
else block(
[a, b, var, k%],
if harmonic_number_expand then (
[a,b]:split_integer_part(x__),
if harmonic_number_expand and b>0 then
simpfuncall('harmonic_number,a) + apply('sum, [1/k%, k%, a+1, a+b])
else simpfuncall('harmonic_number, x__))
else simpfuncall('harmonic_number, x__))$
num_harmonic_number(l, h) :=
if h<l then 0
else if h=l then 1/l
else if h-l<50 then sum(1/i, i, l, h)
else block(
[mid: floor((l+h)/2)],
num_harmonic_number(l, mid) +
num_harmonic_number(mid+1, h))$
simplifying('harmonic_number,'simp_harmonic_number)$
simp_gen_harmonic_number(exp__, x__):=
if x__=0 then 0
else if integerp(x__) and x__<1 then error("Zero to negative power computed.")
else if exp__=1 then harmonic_number(x__)
else if x__>=inf then zeta(exp__)
else if integerp(x__) and integerp(exp__) then num_gen_harmonic_number(exp__, 1, x__)
else if integerp(x__) then sum(1/i^exp__, i, 1, x__)
else if (numberp(x__) and numberp(exp__)) or imagpart(x__)#0 then
(-1)^(exp__+1)/(exp__-1)!*(psi[exp__-1](x__+1)-psi[exp__-1](1))
else block(
[a, b, var, k%],
if harmonic_number_expand then (
[a,b]:split_integer_part(x__),
if harmonic_number_expand and b>0 then
simpfuncall('gen_harmonic_number,exp__,a) + apply('sum, [1/k%^exp__, k%, a+1, a+b])
else simpfuncall('gen_harmonic_number, exp__, x__))
else simpfuncall('gen_harmonic_number, exp__, x__))$
num_gen_harmonic_number(a, l, h) :=
if h<l then 0
else if h=l then 1/l
else if h-l<50 then sum(1/i^a, i, l, h)
else block(
[mid: floor((l+h)/2)],
num_gen_harmonic_number(a, l, mid) +
num_gen_harmonic_number(a, mid+1, h))$
simplifying('gen_harmonic_number,'simp_gen_harmonic_number)$
get_harmonic_number_args(expr) :=
if atom(expr) then {}
else if part(expr, 0)=harmonic_number then {[1, part(expr, 1)]}
else if part(expr, 0)=gen_harmonic_number then {[part(expr, 1), part(expr, 2)]}
else xreduce(union, map(get_harmonic_number_args, args(expr)))$
split_integer_part(expr) :=
if integerp(expr) then [0,expr]
else if atom(expr) then [expr,0]
else if part(expr,0)="+" then block(
[a:0,b:0],
for arg in args(expr) do (
if integerp(arg) then b:b+arg
else a:a+arg),
[a,b])
else [expr, 0]$
harmonic_to_psi(expr) :=
opsubst([
harmonic_number=lambda([x__], psi[0](x__+1)+%gamma),
gen_harmonic_number=lambda([exp__, x__],
(-1)^(exp__+1)/(exp__-1)!*(psi[exp__-1](x__+1)-psi[exp__-1](1)))],
expr)$
/*******************
*
* sum_by_parts
*
*******************/
sum_by_parts(fkgk, gk, k__, m__, n__) := block(
[fk:fkgk/gk, j__:?gensym(), gj, oth, harmonic_number_expand:true],
gj: subst(k__=j__, gk),
oth: (subst(k__=k__+1, fk) - fk) * apply('sum, [gj, j__, m__, k__]),
subst(k__=n__+1, fk) * apply('sum, [gj, j__, m__, n__]) - apply('sum, [oth, k__, m__, n__]))$
/*******************
*
* sum_by_integral:
* - currently only handles harmonic_number, but could be extended to other functions.
*
*******************/
define_variable(sum_by_integral_transforms, [], list)$
sum_by_integral(expr, var, lo, hi) :=
/* Integral representation of harmonic_number */
if catch(
scanmap(
lambda([u], if not atom(u) and member(part(u,0), [harmonic_number]) then throw(true)),
expr,
bottomup))=true then
block(
[expr1, x_:?gensym()],
supcontext (concat('sum_by_integral, simplify_sum_depth)),
assume(x_>0, x_<1, var>=lo, var<=hi),
expr1 : opsubst(harmonic_number=lambda([u], (1-x_^u)/(1-x_)), expr),
if errcatch(
expr1 : simplify_sum(split_sum(expand(apply('sum, [expr1, var, lo, hi]))))
) = [] then expr1 : false,
killcontext(concat('sum_by_integral, simplify_sum_depth)),
for tr in sum_by_integral_transforms do (
expr1 : apply(tr, [expr1])),
if expr1 # false then expr1: integrate(expr1, x_, 0, 1)
else expr1 : apply('sum, [expr, var, lo, hi]),
if freeof_integrate(expr1) and freeof_limit(expr1) then expr1
else apply('sum, [expr, var, lo, hi]))
else apply('sum, [expr, var, lo, hi])$
/*****
* recognize sums of the form sum(f(n) - f(n+1), n, a, b) where f(n)=f1(n)/f2(n) for
* simple functions f1 and f2.
****/
find_f2(expr) :=
if mapatom(expr) then (if subvarp(expr) then [expr] else [])
else if member(part(expr, 0), ["+", "-", "/", "*"]) then
apply(append, map(find_f2, args(expr)))
else [expr]$
find_f1(expr, f2, var) := block(
[f21: ratsimp(subst(var=var+1, f2)), f1, f11, algebraic:true],
expr: ratsimp(expr*f2*f21),
f1: coeff(ratsimp(expr), f21),
f11: subst(var=var+1, f1),
expr: radcan(expr - f21*f1 + f2*f11),
if expr=0 then f1
else false)$
find_quotient(expr, var) := block(
[f2_list, f1, quotient: false],
f2_list: find_f2(expr),
for f2 in f2_list while quotient=false do (
f1: find_f1(expr, f2, var),
if f1#false then
quotient: f1/f2),
quotient)$
telescoping_sum(expr, var, lo, hi) := block(
[quotient: find_quotient(expr, var)],
if quotient#false then
(if lo=minf then limit(quotient, var, lo) else subst(var=lo, quotient)) -
(if hi=inf then limit(quotient, var, hi) else subst(var=hi+1, quotient))
else false)$
eval_when(batch,
ttyoff : false,
nolabels : false)$
|