1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
;; COPYRIGHT NOTICE
;;
;; Copyright (C) 2006 Mario Rodriguez Riotorto
;;
;; This program is free software; you can redistribute
;; it and/or modify it under the terms of the
;; GNU General Public License as published by
;; the Free Software Foundation; either version 2
;; of the License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it
;; will be useful, but WITHOUT ANY WARRANTY;
;; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details at
;; http://www.gnu.org/copyleft/gpl.html
;; This is a set of numerical routines used by package 'stats'
;; For questions, suggestions, bugs and the like, feel free
;; to contact me at
;; mario @@@ edu DOT xunta DOT es
;; www.biomates.net
(in-package :maxima)
;; para traducir funciones de usuario a lisp:
;; (meval '($translate $random_normal))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Wilcoxon-Mann-Whitney recursion ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This recursion is used when computing exact probabilities
;; for the distribution of the rank statistic in the Wilcoxon-
;; Mann-Whitney test, specially for small samples. It's defined as
;; a(i,j,k) = a(i,j-1,j-k) + a(i-k,j-1,j-k-1)
;; Reference:
;; Klotz, Jerome (2006) 'A Computational Approach to Statistics',
;; available at www.stat.wisc.edu/~klotz/Book.pdf
(defun rank_sum_recursion (i j k)
(cond ((or (< i 0) (< j 0) (< k 0)) 0)
((= i 0) 1)
(t (+ (rank_sum_recursion i (- j 1) (- j k))
(rank_sum_recursion (- i k) (- j 1) (+ j (- k) (- 1)) )))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Signed rank recursion ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This recursion is used when computing exact probabilities
;; for the true distribution of statistic in the signed rank test,
;; specially for small samples. It's defined as
;; a(i,j) = a(i,j-1) + a(i-j,j-1)
;; Reference:
;; Klotz, Jerome (2006) 'A Computational Approach to Statistics',
;; available at www.stat.wisc.edu/~klotz/Book.pdf
;; R statistical package. File signrank.c
(defun signed_rank_recursion (i j)
(let* ((u (/ (* j (+ j 1)) 2))
(c (floor (/ u 4))))
(if (> i c) (setf i (- u i)))
(cond ((or (< i 0) (< j 0)) 0)
((= i 0) 1)
(t (+ (signed_rank_recursion i (- j 1))
(signed_rank_recursion (- i j) (- j 1)))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Shapiro-Wilk test for normality ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Calculates the algebraic polynomial of order (- (lengh cc) 1)
;; with array of coefficients cc. Zero order coefficient is (aref cc 0).
(defun swpoly (cc x)
(let ( (ret-val (aref cc 0))
(nord (length cc))
p)
(when (> nord 1)
(setf p (* x (aref cc (1- nord))))
(do ((j (- nord 2) (1- j)))
((= j 0) 'done)
(setf p (* x (+ p (aref cc j)))))
(setf ret-val (+ ret-val p)) )
ret-val ) )
;; Calculates the Shapiro-Wilk test and its significance level
;; This is a translation from Fortran to Lisp of swilk.f, which translation
;; to C is used by the R statistical package. This is
;; Algorithm AS R94, Applied Statistics (1995), vol.44, no.4, 547-551
;; Argument 'x' is a Maxima list containing numbers. Optional argument 'n1'
;; is the number of uncensored observations; this option is not documented
;; in Maxima at this moment, since I haven't checked it; in fact, the R
;; function 'shapiro.test' doesn't make use of this second argument (I don't know why).
(defun $test_normality (x &optional n1)
(declare (special $stats_numer))
(unless (or ($listp x)
(and ($matrixp x) (= ($length ($first x)) 1)))
(merror "First argument of 'test_normality' must be a Maxima list"))
(when ($matrixp x)
(setq x ($first ($transpose x))))
(setf x (sort (map 'list #'$float (rest x)) #'<))
(if (null n1) (setf n1 (length x)))
(let* (($numer $stats_numer)
(n (length x))
(n2 (floor (/ n 2)))
w pw ; W statistic and its p-value
; initialized data
(z90 1.2816) (z95 1.6449)
(z99 2.3263) (zm 1.7509) (zss 0.56268)
(bf1 0.8378) (xx90 0.556) (xx95 0.622)
(sqrth 0.70711) (small 1e-19) (pi6 1.909859) (stqr 1.047198)
; polynomial coefficients
(g (make-array 2 :element-type 'flonum
:initial-contents '(-2.273 0.459)))
(c1 (make-array 6 :element-type 'flonum
:initial-contents '(0.0 0.221157 -0.147981 -2.07119 4.434685 -2.706056)))
(c2 (make-array 6 :element-type 'flonum
:initial-contents '(0.0 0.042981 -0.293762 -1.752461 5.682633 -3.582633)))
(c3 (make-array 4 :element-type 'flonum
:initial-contents '(0.544 -0.39978 0.025054 -6.714e-4)))
(c4 (make-array 4 :element-type 'flonum
:initial-contents '(1.3822 -0.77857 0.062767 -0.0020322)))
(c5 (make-array 4 :element-type 'flonum
:initial-contents '(-1.5861 -0.31082 -0.083751 0.0038915)))
(c6 (make-array 3 :element-type 'flonum
:initial-contents '(-0.4803 -0.082676 0.0030302)))
(c7 (make-array 2 :element-type 'flonum
:initial-contents '(0.164 0.533)))
(c8 (make-array 2 :element-type 'flonum
:initial-contents '(0.1736 0.315)))
(c9 (make-array 2 :element-type 'flonum
:initial-contents '(0.256 -0.00635)))
ncens nn2 i1 range delta a2 a1 an25 an rsn fac ssumm2 summ2 xi xx y w1
ssassx xsx asa sax ssa ssx sx sa zbar zsd zfm z99f z95f
z90f bf ld s m gamma a)
(setf an (coerce n 'flonum))
(setf ncens (- n n1)) ; number of censored observations
(setf nn2 (truncate n 2))
(if (or (< n 3) (> n 5000))
(merror "Sample size must be between 3 and 5000"))
(setf range (- (car (last x)) (first x)))
(if (< range small)
(merror "All observations are identical"))
(if (< n1 3) (merror "Number of uncensored observations is too small"))
(if (< ncens 0)
(merror "Number of uncensored observations is greater than total sample size!!"))
(if (and (> ncens 0) (< n 20))
(merror "Sample size is too small, and censored data are not allowed"))
(setf delta (/ ncens an))
(if (> delta 0.8)
(merror "Ratio of censored observations is too great (>80%)"))
; calculate coefficients for statistic w
(setf a (make-array (1+ n2) :element-type 'flonum :initial-element 0.0))
(cond ((= n 3)
(setf (aref a 1) sqrth))
(t (setf an25 (+ 0.25 an))
(setf summ2 0.0)
(do ((i 1 (1+ i)))
((> i n2) 'done)
(setf (aref a i)
(coerce (mul* 1.414213562373095
(simplify
(list '(%inverse_erf)
(add* (mul* 2.0 (/ (- i 0.375) an25)) -1))))
'flonum))
(setf summ2 (+ summ2 (* (aref a i) (aref a i)))))
(setf summ2 (* summ2 2.0))
(setf ssumm2 (sqrt summ2))
(setf rsn (/ 1.0 (sqrt an)))
(setf a1 (- (swpoly c1 rsn) (/ (aref a 1) ssumm2)))
; normalize a
(cond ((> n 5)
(setf i1 3)
(setf a2 (- (swpoly c2 rsn) (/ (aref a 2) ssumm2) ))
(setf fac (sqrt (/ (+ summ2
(* (aref a 1) (aref a 1) -2.0)
(* (aref a 2) (aref a 2) -2.0))
(+ 1.0 (* a1 a1 -2.0) (* a2 a2 -2.0)))))
(setf (aref a 2) a2) )
(t (setf i1 2)
(setf fac (sqrt (/ (- summ2 (* 2.0 (aref a 1) (aref a 1)))
(- 1.0 (* 2.0 a1 a1))))) ))
(setf (aref a 1) a1)
(do ((i i1 (1+ i)))
((> i nn2) 'done)
(setf (aref a i) (/ (aref a i) (- fac)))) ))
; check for correct sort order on range - scaled X
(setf xx (/ (first x) range))
(setf sx xx)
(setf sa (- (aref a 1)))
(do ((j (1- n) (1- j))
(i 1 i))
((>= i n1) 'done)
(setf xi (/ (nth i x) range))
(setf sx (+ sx xi))
(setf i (1+ i))
(if (/= i j)
(setf sa (+ sa (* (signum (- i j)) (aref a (min i j))))))
(setf xx xi) )
; Calculate W statistic as squared correlation
; between data and coefficients
(setf sa (/ sa n1))
(setf sx (/ sx n1))
(setf ssa 0.0
ssx 0.0
sax 0.0)
(do ((j (1- n) (1- j))
(i 0 (1+ i)))
((>= i n1) 'done)
(if (/= i j)
(setf asa (- (* (signum (- i j)) (aref a (+ 1 (min i j)))) sa))
(setf asa (- sa)))
(setf xsx (- (/ (nth i x) range) sx))
(setf ssa (+ ssa (* asa asa)))
(setf ssx (+ ssx (* xsx xsx)))
(setf sax (+ sax (* asa xsx))) )
; w1 equals (1-w) calculated to avoid excessive rounding error
; for W very near 1 (a potential problem in very large samples)
(setf ssassx (sqrt (* ssa ssx)))
(setf w1 (/ (* (- ssassx sax) (+ ssassx sax))
(* ssa ssx)))
(setf w (- 1 w1))
; calculate significance level for w
(tagbody
(when (= n 3)
(setf pw (* pi6 (- ($asin (sqrt w)) stqr)))
(go fin))
(setf y (log w1)
xx (log an))
(cond ((<= n 11)
(setf gamma (swpoly g an))
(when (>= y gamma)
(setf pw small)
(go fin))
(setf y (- (log (- gamma y)))
m (swpoly c3 an)
s (exp (swpoly c4 an))))
(t ; n >= 12
(setf m (swpoly c5 xx)
s (exp (swpoly c6 xx)))))
; censoring by proportion ncens/n
; calculate mean and sd of normal equivalent deviate of w
(when (> ncens 0)
(setf ld (- (log delta))
bf (+ 1.0 (* xx bf1)))
(setf z90f (+ z90 (* bf (expt (swpoly c7 (expt xx90 xx)) ld))))
(setf z95f (+ z95 (* bf (expt (swpoly c8 (expt xx95 xx)) ld))))
(setf z99f (+ z99 (* bf (expt (swpoly c9 xx) ld))))
; regress z90F,...,z99F on normal deviates z90,...,z99 to get
; pseudo-mean and pseudo-sd of z as the slope and intercept
(setf zfm (/ (+ z90f z95f z99f) 3.0))
(setf zsd (/ (+ (* z90 (- z90f zfm))
(* z95 (- z95f zfm))
(* z99 (- z99f zfm)))
zss))
(setf zbar (- zfm (* zsd zm)))
(setf m (+ m (* zbar s)))
(setf s (* s zsd)) )
(setf pw (- 0.5 (* 0.5 (mfuncall '%erf (/ (- y m)
(* 1.41421356 s))))))
fin)
; the result is an 'inference_result' Maxima object
($inference_result
"SHAPIRO - WILK TEST"
(list '(mlist) (list '(mlist) '$statistic w)
(list '(mlist) '$p_value pw))
(list '(mlist) 1 2) ) ))
|