File: numstats.lisp

package info (click to toggle)
maxima 5.49.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 128,980 kB
  • sloc: lisp: 437,854; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,204; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (294 lines) | stat: -rw-r--r-- 12,080 bytes parent folder | download | duplicates (17)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
;;                 COPYRIGHT NOTICE
;;  
;;  Copyright (C) 2006 Mario Rodriguez Riotorto
;;  
;;  This program is free software; you can redistribute
;;  it and/or modify it under the terms of the
;;  GNU General Public License as published by
;;  the Free Software Foundation; either version 2 
;;  of the License, or (at your option) any later version. 
;;  
;;  This program is distributed in the hope that it
;;  will be useful, but WITHOUT ANY WARRANTY;
;;  without even the implied warranty of MERCHANTABILITY
;;  or FITNESS FOR A PARTICULAR PURPOSE. See the 
;;  GNU General Public License for more details at
;;  http://www.gnu.org/copyleft/gpl.html

;;  This is a set of numerical routines used by package 'stats'

;; For questions, suggestions, bugs and the like, feel free
;; to contact me at
;; mario @@@ edu DOT xunta DOT es
;; www.biomates.net


(in-package :maxima)

;; para traducir funciones de usuario a lisp:
;; (meval '($translate $random_normal))



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;                                       ;;
;;    Wilcoxon-Mann-Whitney recursion    ;;
;;                                       ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;  This recursion is used when computing exact probabilities
;;  for the distribution of the rank statistic in the Wilcoxon-
;;  Mann-Whitney test, specially for small samples. It's defined as
;;             a(i,j,k) = a(i,j-1,j-k) + a(i-k,j-1,j-k-1)
;;  Reference:
;;     Klotz, Jerome (2006) 'A Computational Approach to Statistics',
;;          available at www.stat.wisc.edu/~klotz/Book.pdf
(defun rank_sum_recursion (i j k)
    (cond ((or (< i 0) (< j 0) (< k 0)) 0)
          ((= i 0) 1)
          (t (+ (rank_sum_recursion i (- j 1) (- j k))
                (rank_sum_recursion (- i k) (- j 1) (+ j (- k) (- 1)) )))))



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;                                       ;;
;;        Signed rank recursion          ;;
;;                                       ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;  This recursion is used when computing exact probabilities
;;  for the true distribution of statistic in the signed rank test,
;;  specially for small samples. It's defined as
;;             a(i,j) = a(i,j-1) + a(i-j,j-1)
;;  Reference:
;;     Klotz, Jerome (2006) 'A Computational Approach to Statistics',
;;          available at www.stat.wisc.edu/~klotz/Book.pdf
;;     R statistical package. File signrank.c
(defun signed_rank_recursion (i j)
  (let* ((u (/ (* j (+ j 1)) 2))
         (c (floor (/ u 4))))
    (if (> i c) (setf i (- u i)))
    (cond ((or (< i 0) (< j 0)) 0)
          ((= i 0) 1)
          (t (+ (signed_rank_recursion i (- j 1))
                (signed_rank_recursion (- i j) (- j 1)))))))




;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;                                       ;;
;;    Shapiro-Wilk test for normality    ;;
;;                                       ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Calculates the algebraic polynomial of order (- (lengh cc) 1)
;; with array of coefficients cc. Zero order coefficient is (aref cc 0).
(defun swpoly (cc x)
  (let ( (ret-val (aref cc 0))
         (nord (length cc))
         p)
    (when (> nord 1) 
      (setf p (* x (aref cc (1- nord))))
      (do ((j (- nord 2) (1- j)))
          ((= j 0) 'done)
        (setf p (* x (+ p (aref cc j)))))
      (setf ret-val (+ ret-val p)) )
    ret-val ) )


;;  Calculates the Shapiro-Wilk test and its significance level
;;  This is a translation from Fortran to Lisp of swilk.f, which translation
;;  to C is used by the R statistical package. This is
;;  Algorithm AS R94, Applied Statistics (1995), vol.44, no.4, 547-551
;;  Argument 'x' is a Maxima list containing numbers. Optional argument 'n1'
;;  is the number of uncensored observations; this option is not documented
;;  in Maxima at this moment, since I haven't checked it; in fact, the R 
;;  function 'shapiro.test' doesn't make use of this second argument (I don't know why).
(defun $test_normality (x &optional n1)
  (declare (special $stats_numer))
   (unless (or ($listp x)
	       (and ($matrixp x) (= ($length ($first x)) 1)))
     (merror "First argument of 'test_normality' must be a Maxima list"))
   (when ($matrixp x)
     (setq x ($first ($transpose x))))
   (setf x (sort (map 'list #'$float (rest x)) #'<))
   (if (null n1) (setf n1 (length x)))
   (let* (($numer $stats_numer)
          (n (length x))
          (n2 (floor (/ n 2)))
          w pw  ; W statistic and its p-value
          ; initialized data
          (z90 1.2816)  (z95 1.6449)
          (z99 2.3263)  (zm 1.7509)   (zss 0.56268)
          (bf1 0.8378)  (xx90 0.556)  (xx95 0.622)
          (sqrth 0.70711)  (small 1e-19)  (pi6 1.909859) (stqr 1.047198)
          ; polynomial coefficients
          (g (make-array 2 :element-type 'flonum
               :initial-contents '(-2.273 0.459)))
          (c1 (make-array 6 :element-type 'flonum
               :initial-contents '(0.0 0.221157 -0.147981 -2.07119 4.434685 -2.706056)))
          (c2 (make-array 6 :element-type 'flonum
               :initial-contents '(0.0 0.042981 -0.293762 -1.752461 5.682633 -3.582633)))
          (c3 (make-array 4 :element-type 'flonum
               :initial-contents '(0.544 -0.39978 0.025054 -6.714e-4)))
          (c4 (make-array 4 :element-type 'flonum
               :initial-contents '(1.3822 -0.77857 0.062767 -0.0020322)))
          (c5 (make-array 4 :element-type 'flonum
               :initial-contents '(-1.5861 -0.31082 -0.083751 0.0038915)))
          (c6 (make-array 3 :element-type 'flonum
               :initial-contents '(-0.4803 -0.082676 0.0030302)))
          (c7 (make-array 2 :element-type 'flonum
               :initial-contents '(0.164 0.533)))
          (c8 (make-array 2 :element-type 'flonum
               :initial-contents '(0.1736 0.315)))
          (c9 (make-array 2 :element-type 'flonum
               :initial-contents '(0.256 -0.00635)))
          ncens nn2 i1 range delta a2 a1 an25 an rsn fac ssumm2 summ2 xi xx y w1 
          ssassx xsx asa sax ssa ssx sx sa zbar zsd zfm z99f z95f 
          z90f bf ld s m gamma a)

      (setf an (coerce n 'flonum))
      (setf ncens (- n n1))   ; number of censored observations
      (setf nn2 (truncate n 2))
      (if (or (< n 3) (> n 5000))
         (merror "Sample size must be between 3 and 5000"))
      (setf range (- (car (last x)) (first x)))
      (if (< range small)
         (merror "All observations are identical"))
      (if (< n1 3) (merror "Number of uncensored observations is too small"))
      (if (< ncens 0) 
         (merror "Number of uncensored observations is greater than total sample size!!"))
      (if (and (> ncens 0) (< n 20))
         (merror "Sample size is too small, and censored data are not allowed"))
      (setf delta (/ ncens an))
      (if (> delta 0.8)
         (merror "Ratio of censored observations is too great (>80%)"))

      ; calculate coefficients for statistic w
      (setf a (make-array (1+ n2) :element-type 'flonum :initial-element 0.0))
      (cond ((= n 3)
                (setf (aref a 1) sqrth))
            (t  (setf an25 (+ 0.25 an))
                (setf summ2 0.0)
                (do ((i 1 (1+ i)))
                   ((> i n2) 'done)
                   (setf (aref a i)
                         (coerce (mul* 1.414213562373095
                                       (simplify
                                          (list '(%inverse_erf)
                                                (add* (mul* 2.0 (/ (- i 0.375) an25)) -1))))
                                 'flonum))
                   (setf summ2 (+ summ2 (* (aref a i) (aref a i)))))
                (setf summ2 (* summ2 2.0))
                (setf ssumm2 (sqrt summ2))
                (setf rsn (/ 1.0 (sqrt an)))
                (setf a1 (- (swpoly c1 rsn) (/ (aref a 1) ssumm2)))
                ; normalize a
                (cond ((> n 5)
                         (setf i1 3)
                         (setf a2 (- (swpoly c2 rsn) (/ (aref a 2) ssumm2) ))
                         (setf fac (sqrt (/ (+ summ2
                                               (* (aref a 1) (aref a 1) -2.0)
                                               (* (aref a 2) (aref a 2) -2.0))
                                            (+ 1.0 (* a1 a1 -2.0) (* a2 a2 -2.0)))))
                         (setf (aref a 2) a2)  )
                      (t (setf i1 2)
                         (setf fac (sqrt (/ (- summ2 (* 2.0 (aref a 1) (aref a 1)))
                                            (- 1.0 (* 2.0 a1 a1)))))     ))
                (setf (aref a 1) a1)
                (do ((i i1 (1+ i)))
                     ((> i nn2) 'done)
                   (setf (aref a i) (/ (aref a i) (- fac))))     ))

      ; check for correct sort order on range - scaled X
      (setf xx (/ (first x) range))
      (setf sx xx)
      (setf sa (- (aref a 1)))
      (do ((j (1- n) (1- j))
           (i 1 i))
          ((>= i n1) 'done)
        (setf xi (/ (nth i x) range))
        (setf sx (+ sx xi))
        (setf i (1+ i))
        (if (/= i j)
            (setf sa (+ sa (* (signum (- i j)) (aref a (min i j))))))
        (setf xx xi) )

      ; Calculate W statistic as squared correlation
      ; between data and coefficients
      (setf sa (/ sa n1))
      (setf sx (/ sx n1))
      (setf ssa 0.0
            ssx 0.0
            sax 0.0)
      (do ((j (1- n) (1- j))
           (i 0 (1+ i)))
        ((>= i n1) 'done)
        (if (/= i j)
            (setf asa (- (* (signum (- i j)) (aref a (+ 1 (min i j)))) sa))
            (setf asa (- sa)))
        (setf xsx (- (/ (nth i x) range) sx))
        (setf ssa (+ ssa (* asa asa)))
        (setf ssx (+ ssx (* xsx xsx)))
        (setf sax (+ sax (* asa xsx)))  )

      ; w1 equals (1-w) calculated to avoid excessive rounding error
      ; for W very near 1 (a potential problem in very large samples)
      (setf ssassx (sqrt (* ssa ssx)))
      (setf w1 (/ (* (- ssassx sax) (+ ssassx sax))
                  (* ssa ssx)))
      (setf w (- 1 w1))

      ; calculate significance level for w
      (tagbody
         (when (= n 3)
            (setf pw (* pi6 (- ($asin (sqrt w)) stqr)))
            (go fin))
         (setf y  (log w1)
               xx (log an))
         (cond ((<= n 11)
                  (setf gamma (swpoly g an))
                  (when (>= y gamma)
                     (setf pw small)
                     (go fin))
                  (setf y (- (log (- gamma y)))
                        m (swpoly c3 an)
                        s (exp (swpoly c4 an))))
               (t ; n >= 12
                  (setf m (swpoly c5 xx)
                        s (exp (swpoly c6 xx)))))

          ; censoring by proportion ncens/n
          ; calculate mean and sd of normal equivalent deviate of w
          (when (> ncens 0)
             (setf ld (- (log delta))
                   bf (+ 1.0 (* xx bf1)))
             (setf z90f (+ z90 (* bf (expt (swpoly c7 (expt xx90 xx)) ld))))
             (setf z95f (+ z95 (* bf (expt (swpoly c8 (expt xx95 xx)) ld))))
             (setf z99f (+ z99 (* bf (expt (swpoly c9 xx) ld))))
             ; regress z90F,...,z99F on normal deviates z90,...,z99 to get
             ; pseudo-mean and pseudo-sd of z as the slope and intercept
             (setf zfm (/ (+ z90f z95f z99f) 3.0))
             (setf zsd (/ (+ (* z90 (- z90f zfm))
                             (* z95 (- z95f zfm))
                             (* z99 (- z99f zfm)))
                          zss))
             (setf zbar (- zfm (* zsd zm)))
             (setf m (+ m (* zbar s)))
             (setf s (* s zsd)) )

          (setf pw (- 0.5 (* 0.5 (mfuncall '%erf (/ (- y m)
                                                    (* 1.41421356 s))))))
        fin)

      ; the result is an 'inference_result' Maxima object
      ($inference_result
         "SHAPIRO - WILK TEST"
         (list '(mlist) (list '(mlist) '$statistic w)
                        (list '(mlist) '$p_value pw))
         (list '(mlist) 1 2) )  ))