File: rtest6a.mac

package info (click to toggle)
maxima 5.49.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 128,980 kB
  • sloc: lisp: 437,854; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,204; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (295 lines) | stat: -rw-r--r-- 7,123 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*************** -*- Mode: MACSYMA; Package: MAXIMA -*-  ******************/
/***************************************************************************
***                                                                    *****
***     Copyright (c) 1984 by William Schelter,University of Texas     *****
***     All rights reserved                                            *****
***************************************************************************/


/* -*- Mode: MACSYMA -*- */
/* batch("me:test6a.mac");
It asked is a pos answred yes
   and is i+1 zero or nonzero and I answered nonzero 
  so should add assume (a>0,not(equal(i+1,0)))  */
kill(all);
done;
risch(x^2*erf(x),x);
(%pi*x^3*erf(x)+(sqrt(%pi)*x^2+sqrt(%pi))*%e^-x^2)/(3*%pi);
ev(diff(%,x),ratsimp);
x^2*erf(x);
assume(a>0);
[a>0];
'integrate(%e^(sqrt(a)*sqrt(y)),y,0,4);
'integrate(%e^(sqrt(a)*sqrt(y)),y,0,4);
changevar(%,y-z^2/a,z,y);
/* on lispm -2*('integrate(z*%e^abs(z),z,-2*sqrt(a),0))/a; */
- 'integrate(2*z*%e^abs(z)/a,z,-2*sqrt(a),0);
x+y/z^2;
y/z^2+x;
part(%,1,2,2);
2;
remvalue(x);
[false];
'integrate(f(x),x,a,b)+x;
'integrate(f(x),x,a,b)+x;
part(%,1,1);
f(x);
x^2+2*x = y^2;
x^2+2*x = y^2;
exp:%+1;
x^2+2*x+1 = y^2+1;
lhs(%);
x^2+2*x+1;
part(exp,2);
y^2+1;
part(%,1);
y^2;
27*y^3+54*x*y^2+36*x^2*y+y+8*x^3+x+1;
27*y^3+54*x*y^2+36*x^2*y+y+8*x^3+x+1;
part(%,2,[1,3]);
54*y^2;
sqrt(piece/54);
abs(y);
x+y+w*z;
w*z+y+x;
inpart(%,3,2);
z;
'limit(f(x)^g(x+1),x,0,minus);
'limit(f(x)^g(x+1),x,0,minus);
inpart(%,1,2);
g(x+1);
'limit(f(x)^g(x+1),x,0,minus);
'limit(f(x)^g(x+1),x,0,minus);
is(inpart(%,0) = nounify(limit));
true;
dpart(x+y/z^2,1,2,1);
y/box(z)^2+x;
exp:expand((b+a)^4);
b^4+4*a*b^3+6*a^2*b^2+4*a^3*b+a^4;
(b+a)^2*(y+x)^2;
(b+a)^2*(y+x)^2;
expand(%);
b^2*y^2+2*a*b*y^2+a^2*y^2+2*b^2*x*y+4*a*b*x*y+2*a^2*x*y+b^2*x^2+2*a*b*x^2+a^2*x^2;
exp:exp/%;
(b^4+4*a*b^3+6*a^2*b^2+4*a^3*b+a^4)/(b^2*y^2+2*a*b*y^2+a^2*y^2+2*b^2*x*y+4*a*b*x*y+2*a^2*x*y+b^2*x^2+2*a*b*x^2+a^2*x^2);
factor(%);
(b+a)^2/(y+x)^2;
dpart(exp,2,4);
(b^4+4*a*b^3+6*a^2*b^2+4*a^3*b+a^4)/(b^2*y^2+2*a*b*y^2+a^2*y^2+box(2*b^2*x*y)+4*a*b*x*y+2*a^2*x*y+b^2*x^2+2*a*b*x^2+a^2*x^2);
part(exp,2,4);
2*b^2*x*y;

op(x+y);
"+"$

operatorp(x+y,"+");
true$
operatorp(x+y,["+"]);
true$
operatorp(x+y,["*"]);
false$
operatorp(x+y,"*");
false$

/* Bug #4307: partswitch affects op and operatorp */
block([partswitch:false],errcatch(op('x)));
[];
block([partswitch:true],errcatch(op('x)));
[];
block([partswitch:false],errcatch(operatorp('x,'end)));
[];
block([partswitch:true],errcatch(operatorp('x,'end)));
[];

subst(a,x+y,x+(x+y)^2+y);
y+x+a^2;
subst(-%i,%i,a+b*%i);
a-%i*b;
subst(x,y,x+y);
2*x;
subst(x = 0,diff(sin(x),x));
1;
errcatch(ev(diff(sin(x),x),x = 0));
[];
(assume(not(equal(i,-1))),0);
0$
ev(integrate(x^i,x),i = -1);
log(x);
errcatch(subst(-1,i,integrate(x^i,x)));
[];
matrix([a,b],[c,d]);
matrix([a,b],[c,d]);
subst("[",matrix,%);
[[a,b],[c,d]];
ratsubst(a,x*y^2,x^4*y^8+x^4*y^3);
a*x^3*y+a^4;
1+cos(x)+cos(x)^2+cos(x)^3+cos(x)^4;
cos(x)^4+cos(x)^3+cos(x)^2+cos(x)+1;
ratsubst(1-sin(x)^2,cos(x)^2,%);
sin(x)^4-3*sin(x)^2+cos(x)*(2-sin(x)^2)+3;
ratsubst(1-cos(x)^2,sin(x)^2,sin(x)^4);
cos(x)^4-2*cos(x)^2+1;

/* SF bug #2907: ratsubst(z, sin(x + 1), 0) crashes when radsubstflag = true */

ratsubst (z, sin(x + 1), 0), radsubstflag=true;
0;

ratsubst (z, sin(2*x), 0), radsubstflag=true;
0;

ratsubst (z, log(x + 1), 0), radsubstflag=true;
0;

ratsubst (u, sqrt(x), x), radsubstflag=true;
u^2;

/* additional ratsubst/radsubstflag cases -- dunno how meaningful these are, oh well */

ratsubst (z, sin(x + 1), 1 + sin(x + 1)^2), radsubstflag=false;
1 + z^2;

ratsubst (z, sin(x + 1), 1 + sin(x + 1)^2), radsubstflag=true;
1 + z^2;

ratsubst (z, sqrt(x + 1), 1 + (x + 1)^2), radsubstflag=false;
2 + 2*x + x^2;

ratsubst (z, sqrt(x + 1), 1 + (x + 1)^2), radsubstflag=true;
2 + 2*x + x^2;

ratsubst (z, sqrt(x + 1), 1 + (x + 1)^(3/2)), radsubstflag=false;
1 + z^3;

ratsubst (z, sqrt(x + 1), 1 + (x + 1)^(3/2)), radsubstflag=true;
1 + z^3;

/* SF bug #3658: "" */

ratsubst (1.1, x, 0.001*cos(x));
cos(11/10)/1000;

(load(lrats), 0);
0;

/* SF bug #4176: fullratsubst
   In these examples, we make sure that both forms of calling
   fullratsubst work as described in the documentation.
*/
fullratsubst(3*z^8 + 13, z^9, 147*z^13 -637);
35721*z^8+1911*z^4+5733*z^3+17199*z^2+51597*z+154154;

fullratsubst(z^9 = 3*z^8 + 13, 147*z^13 -637);
35721*z^8+1911*z^4+5733*z^3+17199*z^2+51597*z+154154;

fullratsubst([z^9 = 3*z^8 + 13], 147*z^13 -637);
35721*z^8+1911*z^4+5733*z^3+17199*z^2+51597*z+154154;


/* The following are examples from the documentation for
   fullratsubst, ratsubst and fullratsubstflag
*/
lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
(d + a*c)*e + a*d + b*c;

lratsubst (a^2 = b, a^3);
a*b;

ratsubst (b*a, a^2, a^3);
a^2*b;

fullratsubst (b*a, a^2, a^3);
a*b^2;

fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
b;

fullratsubst (a^2 = b*a, a^3);
a*b^2;

/* SF bug #3376: fullratsubst doesn't catch infinite recursions
   In this example, fullratsubst1 should loop exactly lrats_max_iter=30 times,
   adding a power of b each time.
*/
fullratsubst(b*a^2,a^2,a^3), lrats_max_iter=30;
a^3*b^30;

/* SF bug #3706: lratsusbst causes bind stack overflow on large lists */
block([l:makelist(concat('x,i)=concat('x,i+1),i,0,5000)], lratsubst(l,x0)) $
x5001 $

/* SF bug #3154 lratsubst NOT as described in Help file */
lratsubst([[a=b,b=c]],a) $
c $

/* first argument to lratsbust should throw an error */
errcatch(lratsubst([[a=b,b=c],[b=c]],a)) $
[] $

lratsubst ([phi_2 = 1.1], 0.001*cos(phi_2)), numer;
0.001*cos(11/10);

/* original example from #3658;
 * note that this assumes load(lrats) already.
 * result is not checked, just whether or not it runs without error.
 */
block ([mat21,theta_1,mat22,phi_2,theta_2,mat23,t,t1,t2,fl,theta1,theta2,phi2,tt],
[mat21:matrix([cos(theta_1/2),
%i*sin(theta_1/2)],[%i*sin(theta_1/2),
cos(theta_1/2)]),
mat22:matrix([cos(theta_2/2)
*exp(%i*phi_2/2),
%i*sin(theta_2/2)*exp(%i*phi_2/2)],
[%i*sin(theta_2/2)*exp(-%i*phi_2/2),cos(theta_2/2)
*exp(-%i*phi_2/2)]),
mat23:mat21.mat22,
t:expand(mat23[2,2]*mat23[1,1]),
t1:expand(demoivre(t)),
t2:trigsimp(trigreduce(2*t1-1))],
fl:true,
for theta1:0 thru %pi step 1.1 do  
for theta2:0 thru %pi step 1.1 do 
for phi2:0  thru 2*%pi step 1.1
do (tt:float(ev(lratsubst([theta_1=theta1,theta_2=theta2,phi_2=phi2],
abs(t2-(cos(theta_1)*cos(theta_2) - sin(theta_1)*sin(theta_2)*cos(phi_2)))),
numer)),
if tt>1e-5 then(fl:false,disp(tt))),
fl,
0);
0;

/* SF bug #2012: "Lisp stack overflow with dpart." */

dpart(cos(a+b),1);
cos(box(b+a));

/* SF bug #3390: "?great mishandles box" */

?great(box(x+t),-box(x+t));
true;

?great(-box(x+t),box(x+t));
false;

/* SF bug #3848: "ratsubst error ZEROP: ((MMINUS) 1) is not a number" */

(kill (y),
 d:-(3^(3/2)*%i+1)^(1/2)/3,
 ratsubst(y,5,d));
-(sqrt(3^(3/2)*%i+1)/3);

ratsubst (1, 1, -1/2);
-1/2;

kill(all);
done;

/* verify that box(...) expressions are displayed as expected in 1-d output
 * (2-d output is tested elsewhere)
 */

string (box (a + b + c));
"box(c+b+a)";

string (box (a + b + c, FOO));
"box(c+b+a,FOO)";