1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* Some cubic polynomials */
block([s,v],s:splitfield(x^3-x-1,x),v:listofvars(s)[1],subst(a,v,s));
[a^6-6*a^4+9*a^2+23,-((a^4-5*a^2+9*a+4)/18),(a^4-5*a^2+4)/9,
-((a^4-5*a^2-9*a+4)/18)]$
/* x^3-x-1 splits completely in Q[a] and one recognizes the roots */
algfac(x^3-x-1,a^6-6*a^4+9*a^2+23);
((9*x-a^4+5*a^2-4)*(18*x+a^4-5*a^2-9*a+4)*(18*x+a^4-5*a^2+9*a+4))/2916$
/* Adding just one root it factors partially */
algfac(x^3-x-1,a^3-a-1);
(x-a)*(x^2+a*x+a^2-1)$
/* Adding a root of the second factor completes the factorization */
primelmt(x^2+a*x+a^2-1,a^3-a-1,b);
[b^6-6*b^4+9*b^2+23,x+2*a]$
/* One recovers the splitting polynomial obtained by splitfield. Moreover
this is an example where the prime element is of the form x+n*a with n > 1 */
bdiscr(1,x,x^2,x^3-x-1);
''(rat(-23))$
poly_discriminant(x^3-x-1,x);
-23;
/* If x is a root, it is an algebraic integer, because the equation is monic, and so is
x^2, then since 23 is prime, {1,x,x^2} is a basis of the algebraic integers in Q[x] */
/* Works for a factorized polynomial */
block([s,v],s:splitfield((x^2-3)*(x^2-2),x),v:listofvars(s)[1],subst(a,v,s));
[a^4-10*a^2+1,-((a^3-9*a)/2),(a^3-9*a)/2,(a^3-11*a)/2,-((a^3-11*a)/2)]$
/* One can see that as the successive adjunction of sqrt(2) and sqrt(3),
that is Q[sqrt(2),sqrt(3)] */
primelmt(a^2-2,b^2-3,c);
[c^4-10*c^2+1,b+a]$
/* Irreducible quartic polynomials */
algfac(x^4-2,a^4-2);
(x-a)*(x+a)*(x^2+a^2)$
/* This is an example from S. Lang, Algebra. If a=2^(1/4), it generates
a subfield (1,a,a^2,a^3) of dimension 4, which doesn't contain all roots.
One needs to add %i to get all of them. Thus the Galois group has 8 elements
and has subgroups of order 4 and 2 */
primelmt(a^4-2,b^2+1,c);
[c^8+4*c^6+2*c^4+28*c^2+1,b+a]$
algfac(x^4-2,c^8+4*c^6+2*c^4+28*c^2+1);
((24*x-c^6-5*c^4-13*c^2-29)*(24*x+c^6+5*c^4+13*c^2+29)
*(24*x-5*c^7-19*c^5-5*c^3-151*c)
*(24*x+5*c^7+19*c^5+5*c^3+151*c))/331776$
/* Another example with Galois group of order 8 */
block([s,v],s:splitfield(x^4+10*x^2-96*x-71,x),v:listofvars(s)[1],subst(a,v,s[1]));
a^8+148*a^6-576*a^5+9814*a^4-42624*a^3+502260*a^2+1109952*a+18860337$
/* With a small change the Galois group is of order 24. The computation takes much
longer */
block([s,v],s:splitfield(x^4+10*x^2-96*x-72,x),v:listofvars(s)[1],subst(a,v,s[1]));
a^24+700*a^22-8640*a^21+202860*a^20-5040000*a^19+85120320*a^18
-1084446720*a^17+28192407600*a^16-307448294400*a^15
+3879455590080*a^14-79002155473920*a^13+862062450860352*a^12
-6341012384716800*a^11+173144130732249600*a^10
-861539021970186240*a^9+6648562403288386560*a^8
-183678612853284864000*a^7+785273136304331653120*a^6
+746838863325592289280*a^5+176781240435133218734080*a^4
+116524085058329916211200*a^3+6983186268545823770542080*a^2
-29426422063945596083896320*a+430620712916420842049765376$
/* For an algebraic curve, such as an hyperbola. Here x^3+2*x*y^2+y^3 is
some algebraic function on the curve. */
algtrace(x^3+2*x*y^2+y^3,y^2-x^2+1,y);
''(rat(6*x^3-4*x))$
ratsimp(ratsubst(sqrt(-1+x^2),y,x^3+2*x*y^2+y^3)+ratsubst(-sqrt(-1+x^2),y,x^3+2*x*y^2+y^3));
6*x^3-4*x$
/* Taking the trace with respect to y one projects the curve on the x axis and one gets
an algebraic function of x */
/* A complicated example with a solvable quintic from D.S.Dummit, Mathematics of computation
57,195(1991)387 . This is clearly at the limit of what maxima can do in reasonable time. Dummit
indeed shows the the Galois group is the Frobenius group of order 20. */
block([s,v],s:splitfield(x^5+15*x+12,x),v:listofvars(s)[1],subst(a,v,s));
[a^20+60*a^16-936*a^15+91350*a^12+605880*a^11+1417536*a^10+36463500*a^8
+122488200*a^7+84862080*a^6-91103616*a^5+1032800625*a^4
+1697841000*a^3+7485825600*a^2+4760933760*a+10933303536,
-((131880620547249*a^19+59683129753141*a^18-304524778993866*a^17
+793203234964096*a^16+4124149330829589*a^15
-117172981627806003*a^14-71306340933544902*a^13
+298650865231229952*a^12
+11251695090720035763*a^11
+88411847804251841367*a^10
+196440402174914992122*a^9
-38341429061015510352*a^8
+4577341927136007203127*a^7
+17087648569913092051863*a^6
+4481766149602673412342*a^5
-15341521613198393243376*a^4
+60345466908156421500816*a^3
+71102697168836172551184*a^2
+1112228012805629359857696*a
+1452913156334429802008064)
/948905619130801728000000),
(34941883569106*a^19-19586610011161*a^18-28628104018984*a^17
+62261757956409*a^16+2067346063311366*a^15
-33646881858167757*a^14+15872125201726692*a^13
+31165731682124373*a^12+3118730624434774902*a^11
+19424644835781405573*a^10
+34928604068980953168*a^9-38639423702912510133*a^8
+1269187385301553504698*a^7
+3667076703510023078577*a^6
-455062882588288189452*a^5
-6073679019448320564969*a^4
+39452666543681343198264*a^3
+47232807378617176983216*a^2
+172758700340547215707584*a
+55253832604158366243216)
/79875691357815936000000,
-((89591685911602852*a^19+2456426401544275*a^18-79829287283577388*a^17
-111266747126642685*a^16
+6693211742640744216*a^15
-85247275218262553049*a^14
-7299844963479831120*a^13
+74488279542565111191*a^12
+8274877365995836629420*a^11
+53413178567062212453753*a^10
+121592356188979166775396*a^9
-50703322221226476748215*a^8
+3190417858093889386657296*a^7
+11697039806926436578278045*a^6
+5565042124477506830126808*a^5
-21907925941416463634269203*a^4
+111830991479469725159092680*a^3
+226384145027764567538132592*a^2
+505623402016123027927501440*a
+199640907190542149950414896)
/278840229388945773235200000),
(87530181817718523*a^19+1215087725977030782*a^18
-953928919736667912*a^17
-1313560049466028133*a^16
+9462158957065791483*a^15
-30528725605743381606*a^14
-1150352116504017502104*a^13
+734949752502164464839*a^12
+9542188140971754165201*a^11
+159271468071468573427074*a^10
+789030615124104571528344*a^9
+1002612772932828989646321*a^8
+1441683814063122556892289*a^7
+53856342854315366109409926*a^6
+116471037468993801002554824*a^5
-71683288419330233672409027*a^4
-112235865378225651840900168*a^3
+1132885879666976209353768288*a^2
+1236791680392483380748206592*a
+5963360303581465557565858608)
/1917026577049002190992000000,
-((87530181817718523*a^19+1215087725977030782*a^18
-953928919736667912*a^17
-1313560049466028133*a^16
+9462158957065791483*a^15
-30528725605743381606*a^14
-1150352116504017502104*a^13
+734949752502164464839*a^12
+9542188140971754165201*a^11
+159271468071468573427074*a^10
+789030615124104571528344*a^9
+1002612772932828989646321*a^8
+1441683814063122556892289*a^7
+53856342854315366109409926*a^6
+116471037468993801002554824*a^5
-71683288419330233672409027*a^4
-112235865378225651840900168*a^3
+1132885879666976209353768288*a^2
-680234896656518810243793408*a
+5963360303581465557565858608)
/3834053154098004381984000000)]$
/* Strangely this slightly different example of Dummit has a Galois group of order 10
and is obtained much faster. */
block([s,v],s:splitfield(x^5-5*x+12,x),v:listofvars(s)[1],subst(a,v,s));
[a^10-20*a^8-60*a^7+230*a^6+612*a^5-400*a^4-4020*a^3+39865*a^2-167220*a
+196036,
-((4402021*a^9+8967410*a^8-71413351*a^7-408236968*a^6+199818827*a^5
+3092804186*a^4+4100015915*a^3-6578347876*a^2
+173297643052*a-409949875488)
/34533412800),
(129271*a^9-1030711*a^8-6736419*a^7+9580539*a^6+215434401*a^5
+342066891*a^4-1374973581*a^3-3638935299*a^2+647047544*a
-49872596204)
/34533412800,
(10382*a^9+27879*a^8-140650*a^7-1021019*a^6-626422*a^5+5112817*a^4
+14638214*a^3+12817495*a^2+373402956*a-783084692)
/178929600,
(1134512*a^9+2308737*a^8-18765741*a^7-110380420*a^6+52641936*a^5
+881981807*a^4+1324907097*a^3-2706594556*a^2+41658559300*a
-104470966864)
/8633353200,
-((1134512*a^9+2308737*a^8-18765741*a^7-110380420*a^6+52641936*a^5
+881981807*a^4+1324907097*a^3-2706594556*a^2
+33025206100*a-104470966864)
/17266706400)]$
/* And this one is even more degenerate */
block([s,v],s:splitfield(x^5-110*x^3-55*x^2+2310*x+979,x),v:listofvars(s)[1],subst(a,v,s));
[a^5-110*a^3-55*a^2+2310*a+979,(a^3-3*a^2-72*a+99)/25,
(a^4-4*a^3-94*a^2+196*a+1276)/125,-((a^4+a^3-84*a^2-89*a+671)/125),
(a^2-2*a-44)/5,a];
/* Since splitfield extensively uses algnorm and factorization in extensions, one can
assume that they work correctly */
|