1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
(L : [exp(-a/p),v,1/gamma(v+1)],0);
0$
is(equal(sort(L) , sort(reverse(L))));
true$
(declare(z,complex),domain : complex,0);
0$
/* #4383 great not transitive (so simplifya not idempotent) */
exp(z) + sqrt(exp(z)) + exp(z);
2*exp(z) + sqrt(exp(z))$
is(orderlessp(exp(z),sqrt(exp(z))) # orderlessp(sqrt(exp(z)),exp(z)));
true$
is((a^(b*d))^f(c)/(b*f(c)) = expand((a^(b*d))^f(c)/(b*f(c)),0,0));
true$
(bad: '[
[f(b),a^(b*c),b],
[a^(b*c),b,f(b)],
[b,f(b),a^(b*c)]
],0);
0$
block([ok : true],
for i in bad do (
ok : ok and sort(i) = sort(reverse(i))),
ok);
true$
/* #365 orderlessp not transitive */
(l: [z+x*(x+2)+v+1,z+x^2+x+v+1,z+(x+1)^2+v],0);
0$
orderlessp(l[1],l[2]);
true$
orderlessp(l[2],l[3]);
true$
orderlessp(l[1],l[3]);
true$
(remvalue(l),0);
0$
(LL : sort([-(1/c^%pi),-(1/(1/c)^%pi),b*c]),0);
0$
orderlessp(first(LL), second(LL));
true$
orderlessp(second(LL), third(LL));
true$
orderlessp(first(LL), third(LL));
true$
(remvalue(LL),0);
0$
/* #3072 orderlessp/great not transitive (2) */
cardinality(map('sort, permutations([A(w*(x-1)), x, A(x-1)])));
1$
/* #4484 more 'great' bugs */
block([domain : 'complex], cardinality(map(sort, permutations([a[1],a,exp(a[1])]))));
1$
block([domain : 'real], cardinality(map(sort, permutations([%e^(a . b),a^^7,a*b]))));
1$
(L : [%e^(a . b),a^^7,a*b],0);
0$
block([ans1,ans2,ans3],
ans1 : xreduce("+",L),
ans2 : expand(ans1,0,0),
ans3 : expand(ans2,0,0),
[ans1,ans2,ans3]);
[a*b+a^^7+%e^(a . b),a*b+a^^7+%e^(a . b),a*b+a^^7+%e^(a . b)]$
/* \#3183 %i * 3^%i/2^%i; does not consistently simplify*/
block([e0 : ((0.23665921047828*%i+0.7345467111924259)*(0.4980156681183566*%i-0.15494982830181)*1.5^%i*cosh(%pi))
/2^%i, e1,e2],
e1 : expand(e0,0,0),
e2 : expand(e1,0,0),
outermap(lambda([a,b], is(a=b)),[e0,e1,e2],[e0,e1,e2]));
[[true, true, true], [true, true, true], [true, true, true]]$
block([e0 : %i * 3^%i/2^%i, e1, e2, e3],
e1 : 1*e0,
e2 : 1*e1,
e3 : 1*e2,
outermap(lambda([a,b], is(a=b)),[e0,e1,e2,e3],[e0,e1,e2,e3]));
[[true, true, true, true], [true, true, true, true], [true, true, true, true], [true, true, true, true]]$
block([EY,ans], declare(K,constant),
EY: 1/2^K+K+3^K,
ans : [EY-EY,(-EY) - (-EY)],
remove(K,constant),
ans);
[0,0]$
block([a,b,c,d,M,L,ans],
[a, b, c, d] : [3, M, M^3, 3^M],
L : powerset ({a, b, c, d}, 2),
declare (M, constant),
ans : maplist (lambda ([p], ?great (first(p), second(p))), L),
remove(M,constant),
ans);
[false, false, false, false, false, false]$
/* Did we make a mess? Let's clean it up!*/
(remvalue(L),remvalue(bad),remove(z,complex), reset(domain), 0);
0$
values;
[]$
facts();
[]$
contexts;
[initial, global]$
|