1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
/* Original version of this file copyright 1999 by Michael Wester,
* and retrieved from http://www.math.unm.edu/~wester/demos/Limits/problems.macsyma
* circa 2006-10-23.
*
* Released under the terms of the GNU General Public License, version 2,
* per message dated 2007-06-03 from Michael Wester to Robert Dodier
* (contained in the file wester-gpl-permission-message.txt).
*
* See: "A Critique of the Mathematical Abilities of CA Systems"
* by Michael Wester, pp 25--60 in
* "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
* and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
*/
/* Start with a famous example => e */
limit((1 + 1/n)^n, n, inf);
%e$
/* => 1/2 */
limit((1 - cos(x))/x^2, x, 0);
1/2$
/* See Dominik Gruntz, _On Computing Limits in a Symbolic Manipulation System_,
Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich,
Switzerland, 1996. => 5 */
limit((3^x + 5^x)^(1/x), x, inf);
5$
/* => 1 */
limit(log(x)/(log(x) + sin(x)), x, inf);
1$
/* => - e^2 [Gruntz] */
limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x^2/(x + 1)))) - exp(x))/x, x, inf);
-%e^2$
/* => 1/3 [Gruntz] */
limit(x*log(x)*log(x*exp(x) - x^2)^2/log(log(x^2 + 2*exp(exp(3*x^3*log(x))))),x, inf);
1/3$
/* => 1/e [Knopp, p. 73] */
limit(1/n * n!^(1/n), n, inf);
1/%e$
/* Rewrite the above problem slightly => 1/e */
limit(1/n * gamma(n + 1)^(1/n), n, inf);
1/%e$
/* => 1 [Gradshteyn and Ryzhik 8.328(2)] */
block([ans],
assume(a > 0),
ans : limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, inf),
forget(a > 0),
ans);
1$
block([ans],
assume(a < 0),
ans : limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, inf),
forget(a < 0),
ans);
1$
/* => e^z [Gradshteyn and Ryzhik 9.121(8)] */
limit(hgfred([1, k], [1], z/k), k, inf);
exp(z)$
/* => Euler's_constant [Gradshteyn and Ryzhik 9.536] */
limit(zeta(x) - 1/(x - 1), x, 1);
%gamma$
/* => gamma(x) [Knopp, p. 385] */
block([ans],
assume(x > 0),
ans : limit(n^x/(x * product((1 + x/k), k, 1, n)), n, inf),
forget(x > 0),
ans);
%gamma$
/* See Angus E. Taylor and W. Robert Mann, _Advanced Calculus_, Second Edition,
Xerox College Publishing, 1972, p. 125 => 1 */
block([ans],
assume(x > 0),
ans : limit(x * integrate(exp(-t^2), t, 0, x)/(1 - exp(-x^2)), x, 0),
forget(x > 0),
ans);
1$
/* => [-1, 1] */
[limit(x/abs(x), x, 0, minus), limit(x/abs(x), x, 0, plus)];
[-1,1]$
/* => pi/2 [Richard Q. Chen] */
limit(atan(-log(x)), x, 0, plus);
%pi/2$
|