1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
polynomialp(1,[x])$
true$
polynomialp(%pi,[x])$
true$
polynomialp(sqrt(23),[x])$
true$
polynomialp(1+x,[x])$
true$
polynomialp(1 + x * (sqrt(5) + x),[x])$
true$
polynomialp(1 + x * (sqrt(5) + x),[y])$
false$
polynomialp(1 + x * (sqrt(5) + y),[x,y])$
true$
polynomialp(1 + sqrt(x),[x], 'numberp, 'numberp);
true$
polynomialp(1 + sqrt(1 + sqrt(x)),[x], 'numberp, 'numberp);
true$
polynomialp(1 + sqrt(x + sqrt(1 + x*y)),[x,y], 'numberp, 'numberp);
true$
polynomialp(cos(x),[x]);
false$
polynomialp(cos(x),[x], 'numberp, 'numberp);
false$
polynomialp([x],[x], 'numberp, 'numberp);
false$
polynomialp((1+x)^a,[x], 'constantp, lambda([e],freeof(x,e)));
true$
polynomialp((1+x)^a,[x], 'constantp);
false$
polynomialp(sin(p)*x^2+cos(p)*y^2-q,[x,y], lambda([ex],freeof(x,y,ex)));
true$
/* Bug #3543: bug with polynomialp */
block ([z : factor (x[1])],
/* This should yield true even though the value of z has
* some extra stuff in its header compared to a vanilla x[1]
*/
polynomialp (x[1], [z]));
true;
|