File: test_matrix_theory.mac

package info (click to toggle)
maxima 5.49.0-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 128,980 kB
  • sloc: lisp: 437,854; fortran: 14,665; tcl: 10,143; sh: 4,598; makefile: 2,204; ansic: 447; java: 374; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (281 lines) | stat: -rw-r--r-- 12,120 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/MatrixTheory/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Matrix Theory ---------- */
ratmx: true$
keepfloat: true$
/* Extract the superdiagonal => [2, 6] */
mat_diag(matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]), 1);
/* (2, 3)-minor => [[1, 2], [7, 8]] */
minor(matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]), 2, 3);
/* Create the 7 x 6 matrix B from rearrangements of the elements of the 4 x 4
   matrix A (this is easiest to do with a MATLAB style notation):
   B = [A(1:3,2:4), A([1,2,4],[3,1,4]); A, [A(1:2,3:4); A([4,1],[3,2])]]
   => [[12 13 14|13 11 14],
       [22 23 24|23 21 24],
       [32 33 34|43 41 44],
       [--------+--+-----]
       [11 12 13 14|13 14],
       [21 22 23 24|23 24],
       [           +-----]
       [31 32 33 34|43 42],
       [41 42 43 44|13 12]].  See Michael James Wester, _Symbolic Calculation
   and Expression Swell Analysis of Matrix Determinants and Eigenstuff_, Ph.D.
   dissertation, University of New Mexico, Albuquerque, New Mexico, December
   1992, p. 89. */
A: matrix([11, 12, 13, 14],
          [21, 22, 23, 24],
          [31, 32, 33, 34],
          [41, 42, 43, 44])$
[< A[1..3,2..4], A[[1,2,4],[3,1,4]]; A, [A[1..2,3..4]; A[[4,1],[3,2]]] >];
remvalue(A)$
/* Create a block diagonal matrix */
mat_diag([matrix([a, 1],[0, a]), b, matrix([c, 1, 0],[0, c, 1],[0, 0, c])]);
/* => [[1 1], [1 0]] */
modulus: 2$
rat(matrix([7, 11], [3, 8]));
modulus: false$
/* => [[-cos t, -sin t], [sin t, -cos t]] */
matrix([cos(t), sin(t)], [-sin(t), cos(t)]);
diff(%, t, 2);
/* => [[(a + 7) x + (2 a - 8) y,   (3 a - 9) x + (4 a + 10) y,
        (5 a + 11) x + (6 a - 12) y]] */
matrix([x, y]) . (a*matrix([1, 3, 5], [2, 4, 6])
                  + matrix([7, -9, 11], [-8, 10, -12]));
/* Matrix norms: infinity norm => 7 */
mat_norm(matrix([1, -2*%i], [-3*%i, 4]), 'inf);
/* Frobenius norm => (a^2 + b^2 + c^2)/(|a| |b| |c|)   (a, b, c real) */
mat_norm(matrix([a/(b*c), 1/c, 1/b], [1/c, b/(a*c), 1/a], [1/b, 1/a, c/(a*b)]),
         'f);
scanmap(factor, %);
/* Hermitian (complex conjugate transpose) => [[1, f(4 + 5 i)], [2 - 3 i, 6]]
   (This assumes f is a real valued function.  In general, the (1, 2) entry
   will be conjugate[f(4 - 5 i)] = conjugate(f)(4 + 5 i).) */
hermitian(matrix([1, 2 + 3*%i], [f(4 - 5*%i), 6]));
m: matrix([a, b], [1, a*b]);
/* Invert the matrix => 1/(a^2 - 1) [[a, -1], [-1/b, a/b]] */
minv: m^^(-1);
m . minv;
remvalue(m, minv)$
/* Inverse of a triangular partitioned (or block) matrix
   => [[A_11^(-1), -A_11^(-1) A_12 A_22^(-1)], [0, A_22^(-1)]].
   See Charles G. Cullen, _Matrices and Linear Transformations_, Second
   Edition, Dover Publications Inc., 1990, p. 35. */
declare([A11, A12, A22], nonscalar)$
matrix([A11, A12], [0, A22])^^(-1);
remove([A11, A12, A22], nonscalar)$
/* LU decomposition of a symbolic matrix   [David Wood]
   [ 1    0   0] [1  x-2  x-3]   [ 1      x-2        x-3    ]
   [x-1   1   0] [0   4   x-5] = [x-1  x^2-3x+6   x^2-3x-2  ]
   [x-2  x-3  1] [0   0   x-7]   [x-2    x^2-8   2x^2-12x+14] */
matrix([ 1,     x-2,         x-3     ],
       [x-1, x^2-3*x+6,   x^2-3*x-2  ],
       [x-2,   x^2-8,   2*x^2-12*x+14])$
ratsimp(lu_decomp_symb(%));
lu_matrices(%, 1..mat_nrows(%));
/* Reduced row echelon form   [Cullen, p. 43]
   => [[1 0 -1 0 2], [0 1 2 0 -1], [0 0 0 1 3], [0 0 0 0 0]] */
matrix([1, 2, 3, 1, 3],
       [3, 2, 1, 1, 7],
       [0, 2, 4, 1, 1],
       [1, 1, 1, 1, 4])$
echelon(%);
/* => 2.  See Gerald L. Bradley, _A Primer of Linear Algebra_, Prentice-Hall,
      Inc., 1975, p. 135. */
rank(matrix([-1, 3, 7, -5], [4, -2, 1, 3], [2, 4, 15, -7]));
/* => 1 */
rank(matrix([2*sqrt(2), 8], [6*sqrt(6), 24*sqrt(3)]));
/* => 1 */
rank(matrix([sin(2*t), cos(2*t)],
            [2*(1 - cos(t)^2)*cos(t), (1 - 2*sin(t)^2)*sin(t)]));
/* Null space => [[2 4 1 0], [0 -3 0 1]]^T or variant   [Bradley, p. 207] */
nullspace(matrix([1, 0, -2, 0], [-2, 1, 0, 3], [-1, 2, -6, 6]));
/* Define a Vandermonde matrix (useful for doing polynomial interpolations) */
matrix([1,   1,   1,   1  ],
       [w,   x,   y,   z  ],
       [w^2, x^2, y^2, z^2],
       [w^3, x^3, y^3, z^3]);
determinant(%);
/* The following formula implies a general result:
   => (w - x) (w - y) (w - z) (x - y) (x - z) (y - z) */
factor(%);
/* Minimum polynomial => (lambda - 1)^2 (lambda + 1)   [Cullen, p. 181] */
matrix([17,  -8, -12, 14],
       [46, -22, -35, 41],
       [-2,   1,   4, -4],
       [ 4,  -2,  -2,  3])$
/* Compute the eigenvalues of a matrix from its characteristic polynomial
   => lambda = {1, -2, 3} */
m: matrix([ 5, -3, -7],
          [-2,  1,  2],
          [ 2, -3, -4]);
charpoly(m, lambda);
solve(% = 0, lambda);
remvalue(m)$
/* In theory, an easy eigenvalue problem! => lambda = {2 - a} for k = 1..100
   [Wester, p. 154] */
ratmx: false$
sparse: true$
eigenvalues((2 - a)*ident(100));
sparse: false$
ratmx: true$
/* => lambda = {4 sin^2(pi k/[2 (n + 1)])} for k = 1..n for an n x n matrix.
      For n = 5, lambda = {2 - sqrt(3), 1, 2, 3, 2 + sqrt(3)}
   See J. H. Wilkinson, _The Algebraic Eigenvalue Problem_, Oxford University
   Press, 1965, p. 307. */
matrix([2, 1, 0, 0, 0],
       [1, 2, 1, 0, 0],
       [0, 1, 2, 1, 0],
       [0, 0, 1, 2, 1],
       [0, 0, 0, 1, 2])$
eigenvalues(%);
/* Eigenvalues of the Rosser matrix.  This matrix is notorious for causing
   numerical eigenvalue routines to fail.   [Wester, p. 146 (Cleve Moler)]
   => {-10 sqrt(10405), 0, 510 - 100 sqrt(26), 1000, 1000,
       510 + 100 sqrt(26), 1020, 10 sqrt(10405)} =
      {-1020.049, 0, 0.098, 1000, 1000, 1019.902, 1020, 1020.049} */
rosser: matrix([ 611,  196, -192,  407,   -8,  -52,  -49,   29],
               [ 196,  899,  113, -192,  -71,  -43,   -8,  -44],
               [-192,  113,  899,  196,   61,   49,    8,   52],
               [ 407, -192,  196,  611,    8,   44,   59,  -23],
               [  -8,  -71,   61,    8,  411, -599,  208,  208],
               [ -52,  -43,   49,   44, -599,  411,  208,  208],
               [ -49,   -8,    8,   59,  208,  208,   99, -911],
               [  29,  -44,   52,  -23,  208,  208, -911,   99])$
eigenvalues(rosser);
errcatch(eigenvalues(sfloat(rosser)));
eigenvalues_by_schur(sfloat(rosser));
remvalue(rosser)$
/* Eigenvalues of the generalized hypercompanion matrix of
   (x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)*(x^2 + x + 1)^2
   => {[-1 +- sqrt(3) i]/2, [-1 +- sqrt(3) i]/2,
       RootsOf(x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)} */
matrix([-a4, -a3, -a2, -a1, -a0,  0,  0,  0,  0],
       [  1,   0,   0,   0,   0,  0,  0,  0,  0],
       [  0,   1,   0,   0,   0,  0,  0,  0,  0],
       [  0,   0,   1,   0,   0,  0,  0,  0,  0],
       [  0,   0,   0,   1,   0,  0,  0,  0,  0],
       [  0,   0,   0,   0,   0, -1, -1,  0,  0],
       [  0,   0,   0,   0,   0,  1,  0,  0,  0],
       [  0,   0,   0,   0,   0,  0,  1, -1, -1],
       [  0,   0,   0,   0,   0,  0,  0,  1,  0])$
eigenvalues(%);
/* Eigenvalues and eigenvectors => lambda = {a, a, a, 1 - i, 1 + i},
   eigenvectors = [[1 0 0 0 0], [0 0 1 0 0], [0 0 0 1 0],
                   [0, (1 + i)/2, 0, 0, 1], [0, (1 - i)/2, 0, 0, 1]]^T */
matrix([a,  0, 0, 0, 0],
       [0,  0, 0, 0, 1],
       [0,  0, a, 0, 0],
       [0,  0, 0, a, 0],
       [0, -2, 0, 0, 2]);
eigenvectors(%);
/* Eigenvalues and generalized eigenvectors   [Johnson and Riess, p. 193]
   => lambda = {1, 1, 1}, eigenvectors = [[4 -1 4], [1 -1 2], [3 -1 3]]^T */
matrix([-1,  -8, 1],
       [-1,  -3, 2],
       [-4, -16, 7])$
eigenvectors(%);
/* Eigenvalues and generalized eigenvectors   [Johnson and Riess, p. 199]
   => lambda = {1, 1, 1, 1, 2, 2}, eigenvectors =
      [[1 -1  0  0  0 0], [-1 0 0 1 0 0], [0 0 1 -1 0 -1],
       [0  0 -1 -2 -1 3], [ 0 2 0 0 0 0], [2 0 1  1 0  0]]^T */
matrix([1, 0, 1, 1, 0, 1],
       [1, 2, 0, 0, 0, 0],
       [0, 0, 2, 0, 1, 1],
       [0, 0, 1, 1, 0, 0],
       [0, 0, 0, 0, 1, 0],
       [0, 0, 0, 0, 1, 1])$
eigenvectors(%);
/* Jordan form => diag([[1 1],[0 1]], [[1 1],[0 1]], -1)   [Gantmacher, p. 172]
   */
matrix([1,  0,  0,  1, -1],
       [0,  1, -2,  3, -3],
       [0,  0, -1,  2, -2],
       [1, -1,  1,  0,  1],
       [1, -1,  1, -1,  2])$
jordan_form(%);
/* Smith normal form => [[1, 0], [0, x^4 - x^2 + 1]]   [Cullen, p. 230] */
matrix([x^2, x - 1], [x + 1, x^2]);
/* Matrix exponential => e [[cos 2, -sin 2], [sin 2, cos 2]] */
mat_expm(matrix([1, -2], [2, 1]));
rectform(%);
/* Matrix exponential   [Rick Niles] =>
   [[1, 4 sin(w t)/w - 3 t , 6 [w t - sin(w t)], 2/w [1 - cos(w t)] ],
    [0, 4 cos(w t) - 3     , 6 w [1 - cos(w t)], 2 sin(w t)         ],
    [0, -2/w [1 - cos(w t)], 4 - 3 cos(w t)    , sin(w t)/w         ],
    [0, -2 sin(w t)        , 3 w sin(w t)      , cos(w t)           ]] */
matrix([0, 1,    0,     0  ],
       [0, 0,    0,     2*w],
       [0, 0,    0,     1  ],
       [0, -2*w, 3*w^2, 0  ])$
rectform(matrix_exp(%, t));
/* Sine of a Jordan matrix => diag([[sin a, cos a],[0, sin a]], sin b,
   [[sin c, cos c, -sin(c)/2],[0, sin c, cos c],[0, 0, sin c]])
   See F. R. Gantmacher, _The Theory of Matrices_, Volume One, Chelsea
   Publishing Company, 1977, p. 100 to see how to do a general function. */
matrix([a, 1, 0, 0, 0, 0],
       [0, a, 0, 0, 0, 0],
       [0, 0, b, 0, 0, 0],
       [0, 0, 0, c, 1, 0],
       [0, 0, 0, 0, c, 1],
       [0, 0, 0, 0, 0, c])$
mat_sinm(%);
/* Sine of a matrix => [[1 0 0], [0 1 0], [0 0 1]]   [Cullen, p. 261] */
%pi/2*matrix([2, 1, 1], [2, 3, 2], [1, 1, 2])$
mat_sinm(%);
/* Matrix square root => {+-[[3 1], [1 4]], +-1/sqrt(5) [[-1 7], [7 6]]} */
matrix([10, 7], [7, 17]);
mat_sqrtm(%);
denest_sqrts(%);
/* Square root of a non-singular matrix   [Gantmacher, p. 233]
   => [[e, (e - n) v w + e/2, (n - e) v], [0, e, 0], [0, (e - n) w, n]
   for arbitrary v and w with arbitrary signs e and n = +-1 */
matrix([1, 1, 0], [0, 1, 0], [0, 0, 1])$
mat_sqrtm(%);
% . %;
/* Square root of a singular matrix   [Gantmacher, p. 239]
   => [[0 a b], [0 0 0], [0 1/b 0]] for arbitrary a and b */
matrix([0, 1, 0], [0, 0, 0], [0, 0, 0])$
errcatch(mat_sqrtm(%));
/* Singular value decomposition
   => [1/sqrt(14)  3/sqrt(10) 1/sqrt(35) ] [2 sqrt(7) 0] [1/sqrt(2)  1/sqrt(2)]
      [2/sqrt(14)  0           -sqrt(5/7)] [0         0] [1/sqrt(2) -1/sqrt(2)]
      [3/sqrt(14) -1/sqrt(10) 3/sqrt(35) ] [0         0]
      = U Sigma V^T --- singular values are [2 sqrt(7), 0] */
matrix([1, 1], [2, 2], [3, 3]);
[u, s, vT] <: svd_symb(%);
ratsimp(u . s . vT);
remvalue(u, s, vT)$
/* Jacobian of (r cos t, r sin t) => [[cos t, -r sin t], [sin t, r cos t]] */
jacobian([r*cos(t), r*sin(t)], [r, t]);
/* Hessian of r^2 sin t => [[2 sin t, 2 r cos t], [2 r cos t, -r^2 sin t]] */
r^2*sin(t);
/* Wronskian of (cos t, sin t) => [[cos t, sin t], [-sin t, cos t]] */
wronskian([cos(t), sin(t)], t);
/* How easy is it to define functions to do the last three operations?
   Jacobian of (r cos t, r sin t) => [[cos t, -r sin t], [sin t, r cos t]] */
MYjacobian(f, x):= block([n: length(x)],
   genmatrix(lambda([i, j], diff(f[i], x[j])), n, n))$
MYjacobian([r*cos(t), r*sin(t)], [r, t]);
/* Hessian of r^2 sin t => [[2 sin t, 2 r cos t], [2 r cos t, -r^2 sin t]] */
MYhessian(f, x):= block([n: length(x)],
   genmatrix(lambda([i, j], diff(f, x[i], 1, x[j], 1)), n, n))$
MYhessian(r^2*sin(t), [r, t]);
/* Wronskian of (cos t, sin t) => [[cos t, sin t], [-sin t, cos t]] */
MYwronskian(f, x):= block([n: length(f)],
   genmatrix(lambda([i, j], diff(f[j], x, i-1)), n, n))$
MYwronskian([cos(t), sin(t)], t);