1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/* Original version of this file copyright 1999 by Michael Wester,
* and retrieved from http://www.math.unm.edu/~wester/demos/MatrixTheory/problems.macsyma
* circa 2006-10-23.
*
* Released under the terms of the GNU General Public License, version 2,
* per message dated 2007-06-03 from Michael Wester to Robert Dodier
* (contained in the file wester-gpl-permission-message.txt).
*
* See: "A Critique of the Mathematical Abilities of CA Systems"
* by Michael Wester, pp 25--60 in
* "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
* and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
*/
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Matrix Theory ---------- */
ratmx: true$
keepfloat: true$
/* Extract the superdiagonal => [2, 6] */
mat_diag(matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]), 1);
/* (2, 3)-minor => [[1, 2], [7, 8]] */
minor(matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]), 2, 3);
/* Create the 7 x 6 matrix B from rearrangements of the elements of the 4 x 4
matrix A (this is easiest to do with a MATLAB style notation):
B = [A(1:3,2:4), A([1,2,4],[3,1,4]); A, [A(1:2,3:4); A([4,1],[3,2])]]
=> [[12 13 14|13 11 14],
[22 23 24|23 21 24],
[32 33 34|43 41 44],
[--------+--+-----]
[11 12 13 14|13 14],
[21 22 23 24|23 24],
[ +-----]
[31 32 33 34|43 42],
[41 42 43 44|13 12]]. See Michael James Wester, _Symbolic Calculation
and Expression Swell Analysis of Matrix Determinants and Eigenstuff_, Ph.D.
dissertation, University of New Mexico, Albuquerque, New Mexico, December
1992, p. 89. */
A: matrix([11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44])$
[< A[1..3,2..4], A[[1,2,4],[3,1,4]]; A, [A[1..2,3..4]; A[[4,1],[3,2]]] >];
remvalue(A)$
/* Create a block diagonal matrix */
mat_diag([matrix([a, 1],[0, a]), b, matrix([c, 1, 0],[0, c, 1],[0, 0, c])]);
/* => [[1 1], [1 0]] */
modulus: 2$
rat(matrix([7, 11], [3, 8]));
modulus: false$
/* => [[-cos t, -sin t], [sin t, -cos t]] */
matrix([cos(t), sin(t)], [-sin(t), cos(t)]);
diff(%, t, 2);
/* => [[(a + 7) x + (2 a - 8) y, (3 a - 9) x + (4 a + 10) y,
(5 a + 11) x + (6 a - 12) y]] */
matrix([x, y]) . (a*matrix([1, 3, 5], [2, 4, 6])
+ matrix([7, -9, 11], [-8, 10, -12]));
/* Matrix norms: infinity norm => 7 */
mat_norm(matrix([1, -2*%i], [-3*%i, 4]), 'inf);
/* Frobenius norm => (a^2 + b^2 + c^2)/(|a| |b| |c|) (a, b, c real) */
mat_norm(matrix([a/(b*c), 1/c, 1/b], [1/c, b/(a*c), 1/a], [1/b, 1/a, c/(a*b)]),
'f);
scanmap(factor, %);
/* Hermitian (complex conjugate transpose) => [[1, f(4 + 5 i)], [2 - 3 i, 6]]
(This assumes f is a real valued function. In general, the (1, 2) entry
will be conjugate[f(4 - 5 i)] = conjugate(f)(4 + 5 i).) */
hermitian(matrix([1, 2 + 3*%i], [f(4 - 5*%i), 6]));
m: matrix([a, b], [1, a*b]);
/* Invert the matrix => 1/(a^2 - 1) [[a, -1], [-1/b, a/b]] */
minv: m^^(-1);
m . minv;
remvalue(m, minv)$
/* Inverse of a triangular partitioned (or block) matrix
=> [[A_11^(-1), -A_11^(-1) A_12 A_22^(-1)], [0, A_22^(-1)]].
See Charles G. Cullen, _Matrices and Linear Transformations_, Second
Edition, Dover Publications Inc., 1990, p. 35. */
declare([A11, A12, A22], nonscalar)$
matrix([A11, A12], [0, A22])^^(-1);
remove([A11, A12, A22], nonscalar)$
/* LU decomposition of a symbolic matrix [David Wood]
[ 1 0 0] [1 x-2 x-3] [ 1 x-2 x-3 ]
[x-1 1 0] [0 4 x-5] = [x-1 x^2-3x+6 x^2-3x-2 ]
[x-2 x-3 1] [0 0 x-7] [x-2 x^2-8 2x^2-12x+14] */
matrix([ 1, x-2, x-3 ],
[x-1, x^2-3*x+6, x^2-3*x-2 ],
[x-2, x^2-8, 2*x^2-12*x+14])$
ratsimp(lu_decomp_symb(%));
lu_matrices(%, 1..mat_nrows(%));
/* Reduced row echelon form [Cullen, p. 43]
=> [[1 0 -1 0 2], [0 1 2 0 -1], [0 0 0 1 3], [0 0 0 0 0]] */
matrix([1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4])$
echelon(%);
/* => 2. See Gerald L. Bradley, _A Primer of Linear Algebra_, Prentice-Hall,
Inc., 1975, p. 135. */
rank(matrix([-1, 3, 7, -5], [4, -2, 1, 3], [2, 4, 15, -7]));
/* => 1 */
rank(matrix([2*sqrt(2), 8], [6*sqrt(6), 24*sqrt(3)]));
/* => 1 */
rank(matrix([sin(2*t), cos(2*t)],
[2*(1 - cos(t)^2)*cos(t), (1 - 2*sin(t)^2)*sin(t)]));
/* Null space => [[2 4 1 0], [0 -3 0 1]]^T or variant [Bradley, p. 207] */
nullspace(matrix([1, 0, -2, 0], [-2, 1, 0, 3], [-1, 2, -6, 6]));
/* Define a Vandermonde matrix (useful for doing polynomial interpolations) */
matrix([1, 1, 1, 1 ],
[w, x, y, z ],
[w^2, x^2, y^2, z^2],
[w^3, x^3, y^3, z^3]);
determinant(%);
/* The following formula implies a general result:
=> (w - x) (w - y) (w - z) (x - y) (x - z) (y - z) */
factor(%);
/* Minimum polynomial => (lambda - 1)^2 (lambda + 1) [Cullen, p. 181] */
matrix([17, -8, -12, 14],
[46, -22, -35, 41],
[-2, 1, 4, -4],
[ 4, -2, -2, 3])$
/* Compute the eigenvalues of a matrix from its characteristic polynomial
=> lambda = {1, -2, 3} */
m: matrix([ 5, -3, -7],
[-2, 1, 2],
[ 2, -3, -4]);
charpoly(m, lambda);
solve(% = 0, lambda);
remvalue(m)$
/* In theory, an easy eigenvalue problem! => lambda = {2 - a} for k = 1..100
[Wester, p. 154] */
ratmx: false$
sparse: true$
eigenvalues((2 - a)*ident(100));
sparse: false$
ratmx: true$
/* => lambda = {4 sin^2(pi k/[2 (n + 1)])} for k = 1..n for an n x n matrix.
For n = 5, lambda = {2 - sqrt(3), 1, 2, 3, 2 + sqrt(3)}
See J. H. Wilkinson, _The Algebraic Eigenvalue Problem_, Oxford University
Press, 1965, p. 307. */
matrix([2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2])$
eigenvalues(%);
/* Eigenvalues of the Rosser matrix. This matrix is notorious for causing
numerical eigenvalue routines to fail. [Wester, p. 146 (Cleve Moler)]
=> {-10 sqrt(10405), 0, 510 - 100 sqrt(26), 1000, 1000,
510 + 100 sqrt(26), 1020, 10 sqrt(10405)} =
{-1020.049, 0, 0.098, 1000, 1000, 1019.902, 1020, 1020.049} */
rosser: matrix([ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99])$
eigenvalues(rosser);
errcatch(eigenvalues(sfloat(rosser)));
eigenvalues_by_schur(sfloat(rosser));
remvalue(rosser)$
/* Eigenvalues of the generalized hypercompanion matrix of
(x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)*(x^2 + x + 1)^2
=> {[-1 +- sqrt(3) i]/2, [-1 +- sqrt(3) i]/2,
RootsOf(x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0)} */
matrix([-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0])$
eigenvalues(%);
/* Eigenvalues and eigenvectors => lambda = {a, a, a, 1 - i, 1 + i},
eigenvectors = [[1 0 0 0 0], [0 0 1 0 0], [0 0 0 1 0],
[0, (1 + i)/2, 0, 0, 1], [0, (1 - i)/2, 0, 0, 1]]^T */
matrix([a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]);
eigenvectors(%);
/* Eigenvalues and generalized eigenvectors [Johnson and Riess, p. 193]
=> lambda = {1, 1, 1}, eigenvectors = [[4 -1 4], [1 -1 2], [3 -1 3]]^T */
matrix([-1, -8, 1],
[-1, -3, 2],
[-4, -16, 7])$
eigenvectors(%);
/* Eigenvalues and generalized eigenvectors [Johnson and Riess, p. 199]
=> lambda = {1, 1, 1, 1, 2, 2}, eigenvectors =
[[1 -1 0 0 0 0], [-1 0 0 1 0 0], [0 0 1 -1 0 -1],
[0 0 -1 -2 -1 3], [ 0 2 0 0 0 0], [2 0 1 1 0 0]]^T */
matrix([1, 0, 1, 1, 0, 1],
[1, 2, 0, 0, 0, 0],
[0, 0, 2, 0, 1, 1],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 1])$
eigenvectors(%);
/* Jordan form => diag([[1 1],[0 1]], [[1 1],[0 1]], -1) [Gantmacher, p. 172]
*/
matrix([1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2])$
jordan_form(%);
/* Smith normal form => [[1, 0], [0, x^4 - x^2 + 1]] [Cullen, p. 230] */
matrix([x^2, x - 1], [x + 1, x^2]);
/* Matrix exponential => e [[cos 2, -sin 2], [sin 2, cos 2]] */
mat_expm(matrix([1, -2], [2, 1]));
rectform(%);
/* Matrix exponential [Rick Niles] =>
[[1, 4 sin(w t)/w - 3 t , 6 [w t - sin(w t)], 2/w [1 - cos(w t)] ],
[0, 4 cos(w t) - 3 , 6 w [1 - cos(w t)], 2 sin(w t) ],
[0, -2/w [1 - cos(w t)], 4 - 3 cos(w t) , sin(w t)/w ],
[0, -2 sin(w t) , 3 w sin(w t) , cos(w t) ]] */
matrix([0, 1, 0, 0 ],
[0, 0, 0, 2*w],
[0, 0, 0, 1 ],
[0, -2*w, 3*w^2, 0 ])$
rectform(matrix_exp(%, t));
/* Sine of a Jordan matrix => diag([[sin a, cos a],[0, sin a]], sin b,
[[sin c, cos c, -sin(c)/2],[0, sin c, cos c],[0, 0, sin c]])
See F. R. Gantmacher, _The Theory of Matrices_, Volume One, Chelsea
Publishing Company, 1977, p. 100 to see how to do a general function. */
matrix([a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c])$
mat_sinm(%);
/* Sine of a matrix => [[1 0 0], [0 1 0], [0 0 1]] [Cullen, p. 261] */
%pi/2*matrix([2, 1, 1], [2, 3, 2], [1, 1, 2])$
mat_sinm(%);
/* Matrix square root => {+-[[3 1], [1 4]], +-1/sqrt(5) [[-1 7], [7 6]]} */
matrix([10, 7], [7, 17]);
mat_sqrtm(%);
denest_sqrts(%);
/* Square root of a non-singular matrix [Gantmacher, p. 233]
=> [[e, (e - n) v w + e/2, (n - e) v], [0, e, 0], [0, (e - n) w, n]
for arbitrary v and w with arbitrary signs e and n = +-1 */
matrix([1, 1, 0], [0, 1, 0], [0, 0, 1])$
mat_sqrtm(%);
% . %;
/* Square root of a singular matrix [Gantmacher, p. 239]
=> [[0 a b], [0 0 0], [0 1/b 0]] for arbitrary a and b */
matrix([0, 1, 0], [0, 0, 0], [0, 0, 0])$
errcatch(mat_sqrtm(%));
/* Singular value decomposition
=> [1/sqrt(14) 3/sqrt(10) 1/sqrt(35) ] [2 sqrt(7) 0] [1/sqrt(2) 1/sqrt(2)]
[2/sqrt(14) 0 -sqrt(5/7)] [0 0] [1/sqrt(2) -1/sqrt(2)]
[3/sqrt(14) -1/sqrt(10) 3/sqrt(35) ] [0 0]
= U Sigma V^T --- singular values are [2 sqrt(7), 0] */
matrix([1, 1], [2, 2], [3, 3]);
[u, s, vT] <: svd_symb(%);
ratsimp(u . s . vT);
remvalue(u, s, vT)$
/* Jacobian of (r cos t, r sin t) => [[cos t, -r sin t], [sin t, r cos t]] */
jacobian([r*cos(t), r*sin(t)], [r, t]);
/* Hessian of r^2 sin t => [[2 sin t, 2 r cos t], [2 r cos t, -r^2 sin t]] */
r^2*sin(t);
/* Wronskian of (cos t, sin t) => [[cos t, sin t], [-sin t, cos t]] */
wronskian([cos(t), sin(t)], t);
/* How easy is it to define functions to do the last three operations?
Jacobian of (r cos t, r sin t) => [[cos t, -r sin t], [sin t, r cos t]] */
MYjacobian(f, x):= block([n: length(x)],
genmatrix(lambda([i, j], diff(f[i], x[j])), n, n))$
MYjacobian([r*cos(t), r*sin(t)], [r, t]);
/* Hessian of r^2 sin t => [[2 sin t, 2 r cos t], [2 r cos t, -r^2 sin t]] */
MYhessian(f, x):= block([n: length(x)],
genmatrix(lambda([i, j], diff(f, x[i], 1, x[j], 1)), n, n))$
MYhessian(r^2*sin(t), [r, t]);
/* Wronskian of (cos t, sin t) => [[cos t, sin t], [-sin t, cos t]] */
MYwronskian(f, x):= block([n: length(f)],
genmatrix(lambda([i, j], diff(f[j], x, i-1)), n, n))$
MYwronskian([cos(t), sin(t)], t);
|