1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

EQUALP(X, Y) returns TRUE if X EQUALs Y otherwise FALSE (doesn't give an
error message like EQUAL(X, Y) would do in this case)
REMFUN(FUN, EXP) replaces all occurrences of FUN(ARG) by ARG in EXP
REMFUN(FUN, EXP, VAR) replaces all occurrences of FUN(ARG) by ARG in EXP
only if ARG contains the variable VAR
FUNP(FUN, EXP) true if EXP contains the function FUN
FUNP(FUN, EXP, VAR) true if EXP contains the function FUN and the variable
VAR is somewhere in the argument of one of the
occurences of FUN
ABSINT(FUN, VAR, HALFPLANE) indefinite integral of FUN with respect to
VAR in the given halfplane (POS, NEG, or BOTH).
If HALFPLANE is omitted, POS is assumed as a
default. FUN may contain expressions of the form
ABS(X), ABS(SIN(X)), ABS(A)*EXP(ABS(B)*ABS(X))
ABSINT(FUN, VAR, A, B) definite integral of FUN with respect to VAR from A to
B. FUN may include absolute values
FOURIER(F, X, P) produces a list of the Fourier coefficients of F(X) defined
on the interval [P, P]
FOURSIMP(L) simplifies SIN(N %PI) to 0 if SINNPIFLAG [TRUE] is TRUE and
COS(N %PI) to (1)^N if COSNPIFLAG [TRUE] is TRUE
FOUREXPAND(L, X, P, LIMIT) generates the Fourier series from the list of
Fourier coefficients L up thru LIMIT terms (LIMIT
may be INF). X and P have same meaning as in
FOURIER
FOURCOS(F, X, P) Fourier cosine coefficients for F(X) defined on [0, P]
FOURSIN(F, X, P) Fourier sine coefficients for F(X) defined on [0, P]
TOTALFOURIER(F, X, P) := FOUREXPAND(FOURSIMP(FOURIER(F, X, P)), X, P, 'INF)
FOURINT(F, X) creates a list of the Fourier integral coefficients of F(X)
defined on [MINF, INF]
FOURINTCOS(F, X) Fourier cosine integral coefficients for F(X) on [0, INF]
FOURINTSIN(F, X) Fourier sine integral coefficients for F(X) on [0, INF]
MIKE@MITMC
