1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
SETUP_AUTOLOAD("lodsav",LODESAVE)$
svhypr(wb,wc):=block([p],swsv:t,print("the type is hypergeometric"),
for i:1 thru 3 do (sl[i]:ssolve(cheq[i],l), la[i,0]:spt[i],
la[i,1]:part(sl[i],1,2), la[i,2]:part(sl[i],2,2)),
print("the solution may be written by Riemann's P-functions as follows"),
pfuncthg(n,dum), replcompform(dum), infosum(dum),
lmin:min(l[1],l[2],l[3],l[4]), lmax:max(l[1],l[2],l[3],l[4]),
if lmin=0 then (j:seekodd(dum),
if j>0 then (ldf3(1),ys:nopmt(j),return(ys))),
ldf3(2),ys:haspmts(dum),return(ys))$
pfuncthg(selv,v):=block([p], p:matrix([la[1,0],la[2,0],la[3,0]],
[la[1,1],la[2,1],la[3,1]],[la[1,2],la[2,2],la[3,2]]),
if selv=y then print("y=",v,"P",p,"(x)") else print("y=P",p,"(x)"))$
infosum(dum):=block([ws],
for i:1 thru 3 do dla[i]:la[i,1]-la[i,2],
ws:dla[1]+dla[2]+dla[3], sum[1]:ratsimp(ws),
ws:dla[1]+dla[2]-dla[3], sum[2]:ratsimp(ws),
ws:dla[1]-dla[2]+dla[3], sum[3]:ratsimp(ws),
ws:dla[1]-dla[2]-dla[3], sum[4]:ratsimp(ws),
for i:1 thru 4 do (var[i]:listofvars(sum[i]),l[i]:length(var[i])))$
excrow(dum):=block([wla], for i:1 thru 3 do exc1c(i))$
ssolve(e,x):=block([l,ws,fws],ws:solve(e,x),l:length(ws),
if l=1 then (fws:first(ws),ws:[fws,fws]),return(ws))$
oddintp(pol,v):=block([c,wtst,wd],c:coeff(pol,v,0),wtst:ratsimp((pol-c)/2),
wd:denom(wtst),if wd=1 and oddp(c) then return(t) else return(f))$
exc1c(i):=block([wla], wla:la[i,1],la[i,1]:la[i,2],
la[i,2]:wla, dla[i]:-dla[i])$
seekodd(dum):=block([i,j],i:1,j:0,
loop, if l[i]=0 and oddp(sum[i]) then (j:j+1,jodd[j]:i),
if l[i]=1 then (ans:read("is",sum[i],"an odd integer?"),
if ans=y then (j:j+1,jodd[j]:i)),
if i<4 then (i:i+1,go(loop)), return(j))$
replcompform(dum):=block([],for i:1 thru 3 do
(nv:listofvars(la[i,1]), if length(nv)>1 then
(ans:read("do you replace in",la[i,1],"?",str4),
if ans=y then (ob:read("replace"),oa:read("by"),
for j:1 thru 2 do la[i,j]:subst(oa,ob,la[i,j])))))$
ldf3(i):=block([], if ldsw[3,i]#y then (ldsw[3,i]:y,
if i=1 then load(pnopm) else
if i=2 then load(phghp) else
if i=3 then load(psleg) else
if i=4 then load(phyp25) else
if i=5 then load(psolh) ))$
LODESave([phypgm,fasl],svhypr,infosum,excrow,ssolve,pfuncthg,
oddintp,exc1c,seekodd,replcompform,ldf3);
/* the sum has no parameter */
nopmt(j):=block([], iodd:minabssum(j),excroots(iodd),
if integerp(sum[iodd]) then (if sum[iodd]>0 then
(excrow(dum),sum[iodd]:-sum[iodd]))
else (ans:read("is",sum[iodd],"positive?",str4), if ans=y then
(excrow(dum),sum[iodd]:-sum[iodd])),
wsum:sum[iodd],xa:x-spt[1],xb:x-spt[2],
print(str1), pfuncthg(n,v), wd:xa*xb,
if sum[iodd]=-1 then ys:elmrephg1(iodd)
else ys:elmrephg2((1-wsum)/2), return(ys))$
minabssum(j):=block([i,j1,j2,minj],i:1,j1:jodd[i], minj:j1,
loop,if i<j then (i:i+1,j2:jodd[i],
if abs(sum[j1]) > abs(sum[j2]) then minj:j2, go(loop)),
return(minj))$
excroots(iodd):=block([],
if iodd=2 or iodd=4 then exc1c(3),
if iodd=3 or iodd=4 then exc1c(2))$
elmrephg1(iodd):=block([w1,w2,w3,w4],
sdla1:ratsimp(-dla[1]-1), sdmu1:ratsimp(-dla[2]-1),
if la[1,1]=la[2,1] then w1:wd^la[1,1]
else w1:xa^la[1,1]*xb^la[2,1],
if dla[1]=dla[2] then w2:wd^sdla1 else w2:xa^sdla1*xb^sdmu1,
w3:k1+k2*'integrate(w2,x), w4:w1*w3, print("y=",w4), ys:w4,
reqans1(dum), if ans=y then
(w5:k1+k2*integrate(w2,x), ys:expand(w1*w5),
y1:coeff(ys,k1,1), y2:coeff(ys,k2,1)), return(ys))$
elmrephg2(m):=block([w1,w2,w3,w4,w5],
sdlam :ratsimp(dla[1]+m), sdmum :ratsimp(dla[2]+m),
sdlam1:ratsimp(sdlam-1),sdmum1:ratsimp(sdmum-1),
if la[1,2]=la[2,2] then w1:wd^la[1,2]
else w1:xa^la[1,2]*xb^la[2,2],
if dla[1]=dla[2] then (w2:wd^sdlam1, w3:wd^(-sdlam)) else
(w2:xa^sdlam1*xb^sdmum1,w3:xa^(-sdlam)*xb^(-sdmum)),
w4:k1+k2*'integrate(w3,x), w5:w1*'diff(w2*w4,x,m-1), print("y=",w5),
ys:w5, reqans1(dum), if ans=y then
(w6:k1+k2*'integrate(w3,x), w7:w1* diff(w2*w6,x,m-1), ys:expand(w7),
y1:coeff(ys,k1,1), y2:coeff(ys,k2,1)), return(ys) )$
LODESave([pnopm,fasl],nopmt,minabssum,excroots,elmrephg1,elmrephg2);
/* the sum has parameters */
haspmts(dum):=block([], y0:1, plist:listofpars(eq),
for i:1 thru 3 do checkcontratn(i),
sortratn(dum), exccolumns(dum), pfuncthg(n,dum),
if not(cdla[1]=cdla[2]) then hgstdd(dum),
make01p(1), make01p(2), pfuncthg(y,y0), xa:x-spt[1],xb:x-spt[2],
if la[1,2]=0 and la[2,2]=0 then (excrow(dum), pfuncthg(y,y0)),
if la[1,1]=0 and la[2,1]=0 and dla[1]=dla[2] then (ans:n,
if not integerp(dla[1]) then
ans:read("Is",dla[1],"an integer?",str4),
if integerp(dla[1]) or ans=y then
(v:-la[3,1],ldf3(3),gsvlgdre(v),return(ys))),
if dla[1]=dla[2] and la[1,3]=2 and la[2,3]=2 then
(ldf3(4),ys:caseof22(dum)),
if ys#f then return(ys) else (hgstdd(dum),
ldf3(5),gsvhg(dum),return(ys)))$
pfdivide(y0,i,lamu):=block([], wy:ratsimp(y0*(x-la[i,0])^lamu),
la[i,1]:ratsimp(la[i,1]-lamu), la[i,2]:ratsimp(la[i,2]-lamu),
la[3,1]:ratsimp(la[3,1]+lamu), la[3,2]:ratsimp(la[3,2]+lamu),
v:-la[3,1], return(wy))$
listofpars(exp):=block([pl],pl:listofvars(exp), pl:delete(x,pl),
pl:delete(y,pl), lplist:length(pl), return(pl))$
contratn(i):=block([], dexp:dla[i], j:1,
wexp:ratsimp(dexp), if wexp=-1/2 then return(f),
dnop:ratsimp(dexp), if integerp(dnop) then return(dnop),
loop, dnop:ratsimp(dexp-1/j), if psdmint(dnop) then return(1/j),
j:j+1, if j<6 then go(loop),
dnop:ratsimp(dexp-2/5), if psdmint(dnop) then return(2/5),
return(f))$
psdmint(dnop):=block([],wdno:ratsimp(dnop),
if integerp(wdno) then (if wdno<=0 then return(t) else return(f)),
if lplist=0 then return(f),
if lplist=1 then
(if denom(wdno)#1 then return(f),
ans:read("Is",wdno,"a minus integer?",str4),
if ans=y then return(t) else return(f)))$
sortratn(dum):=block([], nrat:0,
for i:1 thru 3 do (if cdla[i]#f then
(nrat:nrat+1, la[i,3]:denom(cdla[i]), if la[i,3]=1 then
(if cdla[i]=0 then la[i,3]:0 else (minla[i]:min(abs(la[i,1]),abs(la[i,2])),
la[i,3]:la[i,3]+minla[i])))
else (if la[i,1]*la[i,2]=0 then la[i,3]:8 else la[i,3]:9)),
clsort(dum))$
exccolumns(dum):=block([],
if la[1,4]#1 then (if la[2,4]=1 then exc2c(1,2) else exc2c(1,3)),
if la[2,4]=3 then exc2c(2,3),
for i:1 thru 3 do dla[i]:ratsimp(la[i,1]-la[i,2]))$
exc2c(l,m):=block([],for i:0 thru 4 do exchla(i,l,m))$
exchla(i,l,m):=block([],ws:la[l,i],la[l,i]:la[m,i],la[m,i]:ws)$
wlength(exp):=block([], p1:first(plist),
if not freeof(p1,exp) then (wdeg:hipow(exp,p1),return(wdeg))
else return(0))$
mklntr(x1,x2,x3):=block([a,b,c,d],
if x3=inf then (a:1/(x2-x1),b:-a*x1, c:0,d:1 ) else
if x2=inf then (a:1, b:-a*x1, c:1,d:-x3) else
if x1=inf then (a:0, b:x2-x3 ,c:1,d:-x3),
vtr:t=ratsimp((a*x+b)/(c*x+d)) )$
checkcontratn(i):=block([wla],
cdla[i]:contratn(i), if cdla[i]#f then return(t),
exc1c(i), cdla[i]:contratn(i))$
hgstdd(dum):=block([],
if la[1,0]=0 and la[2,0]=1 and la[3,0]=inf then return(f),
mklntr(la[1,0],la[2,0],la[3,0]),
print(str2,vtr), la[1,0]:0,la[2,0]:1,la[3,0]:inf,
print(str1),pfuncthg(n,dum))$
make01p(i):=block([],
if la[i,1]=la[i,2] and la[i,2]#0 then y0:pfdivide(y0,i,la[i,2]) else
(l1:wlength(la[i,1]),l2:wlength(la[i,2]),
if l1>l2 then excrow(dum),
if la[i,1]#0 then y0:pfdivide(y0,i,la[i,2]),
if la[i,2]=0 then exc1c(1)))$
clsort(dum):=block([], for i:1 thru 3 do la[i,4]:3,
for i:1 thru 3 do (i1:nmod(i+1,3),i2:nmod(i+2,3),
if la[i ,3]<=la[i1,3] and la[i,3]<=la[i2,3] then (la[i,4]:1,
if la[i1,3]<=la[i2,3] then la[i1,4]:2 else la[i2,4]:2)))$
nmod(n,k):=block([],if n>k then return(n-k) else return(n))$
LODESave([phghp,fasl],haspmts,pfdivide,listofpars,contratn,
checkcontratn,mklntr,psdmint,sortratn,exccolumns,
exc2c,exchla,wlength,hgstdd,make01p,clsort,nmod);
gsvlgdre(v):=block([],remvalue(L),
print("The solution is representable by the solution of Legendre's eq:
(x^2-1)*y''+2*x*y'-v*(v+1)*y=0"),
if la[1,2]=0 and la[2,2]=0 then svlgdre(v) else
(if la[1,2]=la[2,2] then
(if integerp(la[1,2]) then
(if la[1,2]>0 then (y0:y0*expand(xa*xb),
la[3,1]:la[3,1]+la[1,2], la[3,2]:la[3,2]+la[1,2], v:-la[3,2],
yw:y[L](v,x), ys:y0^la[1,2]*'diff(yw,x,la[1,2]),
print("y=",ys), return(ys)))
else
(ans:read("Is",la[1,2],str5),
if ans=p then (w0:expand(xa*xb),y0:y0*w0^la[1,2] ,
la[3,1]:la[3,1]+la[1,2], la[3,2]:la[3,2]+la[1,2],v:-la[3,2]) else
if ans=m then (la[1,2]:-la[1,2], la[3,1]:la[3,1]-la[1,2],
la[3,2]:la[3,2]-la[1,2], v:-la[3,2]),
remvalue(L), yw:y[L](v,x), ys:y0*'diff(yw,x,la[1,2]),
print("y=",ys,",where y[L](v,x) is the solution of Legendre's eq."),
return(ys)) ) ))$
svlgdre(v):=block([],
if spt[1]*spt[2]=-1 and (spt[1]=1 or spt[1]=-1) then
(ys:y0*y[L](v,x), print("y=",ys), return(ys))
else (lfrtr:(-2*x+spt[1]+spt[2])/(spt[1]-spt[2]),lfrtr:ratsimp(lfrtr),
vtr:t=lfrtr, ys:y0*y[L](v,t),
print("y=",ys,"where t=",lfrtr),return(ys)))$
LODESave([psleg,fasl],svlgdre,gsvlgdre);
caseof22(dum):=block([], ans:no,
mcdla:ratsimp(-dal[1]+1/2),
if not integerp(mcdla) then
ans:read("Is",mcdla,"a positive integer?",str4),
if (integerp(mcdla) and mcdla>=0) or ans=y then (
w1:sqrt(xa), w2:sqrt(xb),
wy1:(w1+w2)^dla[3], wy2:(w1-w2)^dla[3],
ys:y0*'diff(k1*wy1+k2*wy2,x,mcdla),print("y=",ys),return(ys))
else return(f))$
LODESave([phyp25,fasl],caseof22);
gsvhg(dum):=block([E,K], ys:f, remvalue(E,K),
if la[1,0]=0 and la[2,0]=1 and la[1,1]=0 and la[2,1]=0 then
(print("The solution is representable by Hypergeometric function."),
ha:la[3,1],hb:la[3,2],hg:-la[1,2]+1, remvalue(G), ys:y0*y[G](ha,hb,hg,x),
if ha=-1/2 and hb=1/2 and hg=1 then
(y1:E(sqrt(x)),y2:E(sqrt(1-x))-K(sqrt(1-x)),ys:k1*y1+k2*y2,print("y=",ys),
print("where E and K are elliptic functions of 1st and 2nd kind."))
else print("y=",ys), return(ys)))$
LODESave([psolh,fasl],gsvhg);
|