File: eigen.mac

package info (click to toggle)
maxima 5.9.1-9
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 32,272 kB
  • ctags: 14,123
  • sloc: lisp: 145,126; fortran: 14,031; tcl: 10,052; sh: 3,313; perl: 1,766; makefile: 1,748; ansic: 471; awk: 7
file content (191 lines) | stat: -rw-r--r-- 6,597 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/* modified for DOE MACSYMA with define_variable */

/*	THIS IS THE FILE EIGEN > DSK:SHARE;.
	THIS IS THE SOURCE CODE FOR THE NEW EIGEN PACKAGE AND IT IS
	MACSYMA BATCHABLE, I.E. BATCH(EIGEN,>,DSK,SHARE);.  IF YOU DO NOT WANT
	TO WASTE TIME (AND/OR PAPER...) THE FASTLOADABLE VERSION IS ON THE FILE
	EIGEN FASL DSK:SHARE;.  YOU CAN LOAD THE LATTER USING MACSYMA'S 
	LOADFILE COMMAND, I.E. LOADFILE(EIGEN,FASL,DSK,SHARE);. THE FUNCTIONS
	ARE DESCRIBED IN THE FILE EIGEN USAGE DSK:SHARE;, AND THE DEMO FILE IN
	WHICH THE FUNCTIONS ARE DEMONSTRATED IS EIGEN DEMO DSK:SHARE;.     */

/* commented out of DOE MACSYMA
EVAL_WHEN(TRANSLATE_FILE,
        MODEDECLARE([HERMITIANMATRIX,NONDIAGONALIZABLE,KNOWNEIGVALS,
	KNOWNEIGVECTS],BOOLEAN,
	[INDEX1,INDEX2,INDEX3,INDEX4,DIMNSN,COUNT,%RNUM],FIXNUM),
        DECLARE([HERMITIANMATRIX,NONDIAGONALIZABLE,KNOWNEIGVALS,
        KNOWNEIGVECTS,LISTEIGVECTS,LISTEIGVALS,%RNUM,LISTARITH,PROGRAMMODE,
	ALGEBRAIC,REALONLY,MULTIPLICITIES,SOLVEEXPLICIT],SPECIAL))$ */

EVAL_WHEN([TRANSLATE,BATCH,DEMO,LOAD,LOADFILE],
MI(VAR)::=BUILDQ([VAR],MODE_IDENTITY(FIXNUM,VAR)),
DV(VAR)::=BUILDQ([VAR],DEFINE_VARIABLE(VAR,FALSE,BOOLEAN)))$

/* COMMENTED OUT OF DOE MACSYMA
SSTATUS(FEATURE,EIGEN)$

HERMITIANMATRIX:FALSE$

NONDIAGONALIZABLE:FALSE$

KNOWNEIGVALS:FALSE$

KNOWNEIGVECTS:FALSE$

LISTEIGVECTS:[]$

LISTEIGVALS:[]$
*/

DV(HERMITIANMATRIX)$ DV(NONDIAGONALIZABLE)$ DV(KNOWNEIGVALS)$
DV(KNOWNEIGVECTS)$

DEFINE_VARIABLE(LISTEIGVECTS,[],LIST)$
DEFINE_VARIABLE(LISTEIGVALS,[],LIST)$
DEFINE_VARIABLE(RIGHTMATRIX,[],ANY)$
DEFINE_VARIABLE(LEFTMATRIX,[],ANY)$

CONJUGATE(X):=SUBLIS('[%I=-%I],X)$

INNERPRODUCT(X,Y):=BLOCK([LISTARITH],LISTARITH:TRUE,RATSIMP(CONJUGATE(X).Y))$
/*
UNITVECTOR(X):=BLOCK([LISTARITH,INTRN],LISTARITH:TRUE,INTRN:INNERPRODUCT(X,X),
INTRN:SQRT(INTRN),X/INTRN)$
*/
UNITVECTOR(X):=BLOCK([LISTARITH],LISTARITH:TRUE,X/SQRT(INNERPRODUCT(X,X)))$

COLUMNVECTOR(X):=TRANSPOSE(MATRIX(X))$


GRAMSCHMIDT(X):=
		BLOCK([LISTARITH,DIMNSN,LISTALL,INTERN,COUNT,DENOM,UNIT,INDEX1,
		INDEX2],
                MODE_DECLARE([DIMNSN,COUNT,INDEX1,INDEX2],FIXNUM,
                              [LISTALL],LIST,[INTERN,DENOM,UNIT],ANY),
		LISTARITH:TRUE,DIMNSN:MI(LENGTH(X)),LISTALL:[PART(X,1)],
		COUNT:1,IF DIMNSN=1 THEN RETURN(X)
		ELSE (FOR INDEX1:2 THRU DIMNSN DO
		(UNIT:PART(X,INDEX1),FOR INDEX2 THRU COUNT DO
		(INTERN:PART(LISTALL,INDEX2),DENOM:INNERPRODUCT(INTERN,INTERN),
		UNIT:FACTOR(RATSIMP(UNIT-INNERPRODUCT(INTERN,UNIT)*INTERN/DENOM
		))),
		COUNT:COUNT+1,LISTALL:ENDCONS(UNIT,LISTALL)),
		RETURN(LISTALL)))$


EIGENVALUES(MAT):=
		BLOCK([DIMNSN,LISTALL,SOLUTION,MULTIPLICITIES,SOLVEEXPLICIT,
	        DUMMY:?GENSYM(),INDEX2],
                MODE_DECLARE([DIMNSN,INDEX2],FIXNUM,[LISTALL,SOLUTION],LIST,
                             [DUMMY],ANY),
		LISTALL:[],
		SOLVEEXPLICIT:TRUE,
		DIMNSN:MI(LENGTH(MAT)),
		SOLUTION:BLOCK([PROGRAMMODE:TRUE],
	        SOLVE(CHARPOLY(MAT,DUMMY),DUMMY)),
		IF SOLUTION=[] THEN 
		(PRINT(" "),PRINT("SOLVE is unable to find the roots of"),
		PRINT("the characteristic polynomial."),
		RETURN(LISTALL))
		ELSE (FOR INDEX2 THRU DIMNSN DO
		(DIMNSN:MI(DIMNSN-PART(MULTIPLICITIES,INDEX2)+1),
		LISTALL:ENDCONS(RHS(PART(SOLUTION,INDEX2)),LISTALL)),
		LISTALL:ENDCONS(MULTIPLICITIES,[LISTALL]),
		RETURN(LISTALL)))$

EIGENVECTORS(MAT):=
		BLOCK([EQUATIONS,UNKNOWNS,SOLUTION,LISTALL,EIGVALS,DIMNSN,
		COUNT,VECTR,INDEX3,INDEX4,INDEX2,INDEX1,MATRX,MMATRX,notknwn,
		UNIT,MULTIPLICITIES,%RNUM,REALONLY,ALGEBRAIC,INTERM,INTERN],
                MODE_DECLARE([EQUATIONS,UNKNOWNS,SOLUTION,LISTALL,EIGVALS,
                              UNIT,INTERM],LIST,
                             [DIMNSN,COUNT,INDEX3,INDEX4,INDEX2,INDEX1],FIXNUM,
                             [VECTR,MATRX,MMATRX,INTERN,NOTKNWN],ANY),
                UNKNOWNS:[],DIMNSN:MI(LENGTH(MAT)),
                COUNT:MI(DIMNSN),notknwn:?gensym(),
		IF KNOWNEIGVALS THEN EIGVALS:LISTEIGVALS
		ELSE EIGVALS:EIGENVALUES(MAT),
		IF EIGVALS=[] THEN (NONDIAGONALIZABLE:TRUE,RETURN(EIGVALS))
		ELSE (MULTIPLICITIES:PART(EIGVALS,2),
		FOR INDEX1 THRU DIMNSN DO
		UNKNOWNS:ENDCONS(concat(notknwn,index1),UNKNOWNS),
		VECTR:COLUMNVECTOR(UNKNOWNS),MATRX:MAT.VECTR,
		NONDIAGONALIZABLE:FALSE,
		LISTALL:[EIGVALS],REALONLY:FALSE,ALGEBRAIC:TRUE,
		FOR INDEX1 THRU COUNT DO 
		(COUNT:MI(COUNT-PART(MULTIPLICITIES,INDEX1)+1),
		MMATRX:MATRX-PART(EIGVALS,1,INDEX1)*VECTR,
		EQUATIONS:[],
		FOR INDEX2 THRU DIMNSN DO
		EQUATIONS:CONS(MMATRX[INDEX2,1],EQUATIONS),%RNUM:0,
		SOLUTION:ALGSYS(EQUATIONS,UNKNOWNS),
		INTERM:MAP('RHS,SOLUTION[1]),
		UNIT:[],IF %RNUM#PART(MULTIPLICITIES,INDEX1)
		THEN NONDIAGONALIZABLE:TRUE,
		FOR INDEX3 THRU %RNUM DO
		(INTERN:SUBSTVECTK(%RNUM_LIST,INDEX3,INTERM),
                UNIT:APPEND(UNIT,[INTERN])),
	        IF UNIT=[] THEN
		(PRINT(" "),PRINT("ALGSYS failure: The eigenvector(s) for the",
		INDEX1,"th eigenvalue will be missing.")),
		IF HERMITIANMATRIX AND %RNUM>1 THEN UNIT:GRAMSCHMIDT(UNIT),
		LISTALL:APPEND(LISTALL,UNIT)),
		RETURN(LISTALL)))$


/* The first arg is of the form [r1,r2,r3].
   We want to construct [r1=0,r2=1,r3=0] for example. */		

SUBSTVECTK(L,N,EXP):=(mode_declare(l,list,n,fixnum,exp,any),
                BLOCK([SUB_LIST:[],J:0],mode_declare(sub_list,list,j,fixnum),
                FOR VAR IN L DO (mode_declare(var,any),
                 J:J+1,SUB_LIST:CONS(VAR = IF J=N THEN 1 ELSE 0,SUB_LIST)),
                SUBLIS(SUB_LIST,EXP)))$


UNITEIGENVECTORS(MAT):=
		BLOCK([LISTUEVEC,LISTALL,INDEX1,UNIT],
                mode_declare([listuevec,listall],list,index1,fixnum,unit,any),
		IF KNOWNEIGVECTS THEN LISTUEVEC:LISTEIGVECTS
		ELSE LISTUEVEC:EIGENVECTORS(MAT),
		IF LISTUEVEC=[] THEN RETURN(LISTUEVEC)
		ELSE (LISTALL:[PART(LISTUEVEC,1)],
		FOR INDEX1:2 THRU LENGTH(LISTUEVEC) DO 
		(UNIT:PART(LISTUEVEC,INDEX1),
		UNIT:RATSIMP(UNITVECTOR(UNIT)),
		LISTALL:ENDCONS(UNIT,LISTALL)),
		RETURN(LISTALL)))$


SIMILARITYTRANSFORM(MAT):=
		BLOCK([LISTVEC,LISTUEVEC],
                mode_declare([listvec,listuevec],list),
		LISTUEVEC:UNITEIGENVECTORS(MAT),
		IF NONDIAGONALIZABLE THEN RETURN(LISTUEVEC)
		ELSE (LISTVEC:DELETE(PART(LISTUEVEC,1),LISTUEVEC),
		RIGHTMATRIX:TRANSPOSE(APPLY('MATRIX,LISTVEC)),
		IF HERMITIANMATRIX THEN
		LEFTMATRIX:CONJUGATE(TRANSPOSE(RIGHTMATRIX))
		ELSE LEFTMATRIX:RIGHTMATRIX^^-1,
		RETURN(LISTUEVEC)))$


CONJ(X):=CONJUGATE(X)$

INPROD(X,Y):=INNERPRODUCT(X,Y)$

UVECT(X):=UNITVECTOR(X)$

COVECT(X):=COLUMNVECTOR(X)$

GSCHMIT(X):=GRAMSCHMIDT(X)$

EIVALS(MAT):=EIGENVALUES(MAT)$

EIVECTS(MAT):=EIGENVECTORS(MAT)$

UEIVECTS(MAT):=UNITEIGENVECTORS(MAT)$

SIMTRAN(MAT):=SIMILARITYTRANSFORM(MAT)$