1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/* modified for DOE MACSYMA with define_variable */
/* THIS IS THE FILE EIGEN > DSK:SHARE;.
THIS IS THE SOURCE CODE FOR THE NEW EIGEN PACKAGE AND IT IS
MACSYMA BATCHABLE, I.E. BATCH(EIGEN,>,DSK,SHARE);. IF YOU DO NOT WANT
TO WASTE TIME (AND/OR PAPER...) THE FASTLOADABLE VERSION IS ON THE FILE
EIGEN FASL DSK:SHARE;. YOU CAN LOAD THE LATTER USING MACSYMA'S
LOADFILE COMMAND, I.E. LOADFILE(EIGEN,FASL,DSK,SHARE);. THE FUNCTIONS
ARE DESCRIBED IN THE FILE EIGEN USAGE DSK:SHARE;, AND THE DEMO FILE IN
WHICH THE FUNCTIONS ARE DEMONSTRATED IS EIGEN DEMO DSK:SHARE;. */
/* commented out of DOE MACSYMA
EVAL_WHEN(TRANSLATE_FILE,
MODEDECLARE([HERMITIANMATRIX,NONDIAGONALIZABLE,KNOWNEIGVALS,
KNOWNEIGVECTS],BOOLEAN,
[INDEX1,INDEX2,INDEX3,INDEX4,DIMNSN,COUNT,%RNUM],FIXNUM),
DECLARE([HERMITIANMATRIX,NONDIAGONALIZABLE,KNOWNEIGVALS,
KNOWNEIGVECTS,LISTEIGVECTS,LISTEIGVALS,%RNUM,LISTARITH,PROGRAMMODE,
ALGEBRAIC,REALONLY,MULTIPLICITIES,SOLVEEXPLICIT],SPECIAL))$ */
EVAL_WHEN([TRANSLATE,BATCH,DEMO,LOAD,LOADFILE],
MI(VAR)::=BUILDQ([VAR],MODE_IDENTITY(FIXNUM,VAR)),
DV(VAR)::=BUILDQ([VAR],DEFINE_VARIABLE(VAR,FALSE,BOOLEAN)))$
/* COMMENTED OUT OF DOE MACSYMA
SSTATUS(FEATURE,EIGEN)$
HERMITIANMATRIX:FALSE$
NONDIAGONALIZABLE:FALSE$
KNOWNEIGVALS:FALSE$
KNOWNEIGVECTS:FALSE$
LISTEIGVECTS:[]$
LISTEIGVALS:[]$
*/
DV(HERMITIANMATRIX)$ DV(NONDIAGONALIZABLE)$ DV(KNOWNEIGVALS)$
DV(KNOWNEIGVECTS)$
DEFINE_VARIABLE(LISTEIGVECTS,[],LIST)$
DEFINE_VARIABLE(LISTEIGVALS,[],LIST)$
DEFINE_VARIABLE(RIGHTMATRIX,[],ANY)$
DEFINE_VARIABLE(LEFTMATRIX,[],ANY)$
CONJUGATE(X):=SUBLIS('[%I=-%I],X)$
INNERPRODUCT(X,Y):=BLOCK([LISTARITH],LISTARITH:TRUE,RATSIMP(CONJUGATE(X).Y))$
/*
UNITVECTOR(X):=BLOCK([LISTARITH,INTRN],LISTARITH:TRUE,INTRN:INNERPRODUCT(X,X),
INTRN:SQRT(INTRN),X/INTRN)$
*/
UNITVECTOR(X):=BLOCK([LISTARITH],LISTARITH:TRUE,X/SQRT(INNERPRODUCT(X,X)))$
COLUMNVECTOR(X):=TRANSPOSE(MATRIX(X))$
GRAMSCHMIDT(X):=
BLOCK([LISTARITH,DIMNSN,LISTALL,INTERN,COUNT,DENOM,UNIT,INDEX1,
INDEX2],
MODE_DECLARE([DIMNSN,COUNT,INDEX1,INDEX2],FIXNUM,
[LISTALL],LIST,[INTERN,DENOM,UNIT],ANY),
LISTARITH:TRUE,DIMNSN:MI(LENGTH(X)),LISTALL:[PART(X,1)],
COUNT:1,IF DIMNSN=1 THEN RETURN(X)
ELSE (FOR INDEX1:2 THRU DIMNSN DO
(UNIT:PART(X,INDEX1),FOR INDEX2 THRU COUNT DO
(INTERN:PART(LISTALL,INDEX2),DENOM:INNERPRODUCT(INTERN,INTERN),
UNIT:FACTOR(RATSIMP(UNIT-INNERPRODUCT(INTERN,UNIT)*INTERN/DENOM
))),
COUNT:COUNT+1,LISTALL:ENDCONS(UNIT,LISTALL)),
RETURN(LISTALL)))$
EIGENVALUES(MAT):=
BLOCK([DIMNSN,LISTALL,SOLUTION,MULTIPLICITIES,SOLVEEXPLICIT,
DUMMY:?GENSYM(),INDEX2],
MODE_DECLARE([DIMNSN,INDEX2],FIXNUM,[LISTALL,SOLUTION],LIST,
[DUMMY],ANY),
LISTALL:[],
SOLVEEXPLICIT:TRUE,
DIMNSN:MI(LENGTH(MAT)),
SOLUTION:BLOCK([PROGRAMMODE:TRUE],
SOLVE(CHARPOLY(MAT,DUMMY),DUMMY)),
IF SOLUTION=[] THEN
(PRINT(" "),PRINT("SOLVE is unable to find the roots of"),
PRINT("the characteristic polynomial."),
RETURN(LISTALL))
ELSE (FOR INDEX2 THRU DIMNSN DO
(DIMNSN:MI(DIMNSN-PART(MULTIPLICITIES,INDEX2)+1),
LISTALL:ENDCONS(RHS(PART(SOLUTION,INDEX2)),LISTALL)),
LISTALL:ENDCONS(MULTIPLICITIES,[LISTALL]),
RETURN(LISTALL)))$
EIGENVECTORS(MAT):=
BLOCK([EQUATIONS,UNKNOWNS,SOLUTION,LISTALL,EIGVALS,DIMNSN,
COUNT,VECTR,INDEX3,INDEX4,INDEX2,INDEX1,MATRX,MMATRX,notknwn,
UNIT,MULTIPLICITIES,%RNUM,REALONLY,ALGEBRAIC,INTERM,INTERN],
MODE_DECLARE([EQUATIONS,UNKNOWNS,SOLUTION,LISTALL,EIGVALS,
UNIT,INTERM],LIST,
[DIMNSN,COUNT,INDEX3,INDEX4,INDEX2,INDEX1],FIXNUM,
[VECTR,MATRX,MMATRX,INTERN,NOTKNWN],ANY),
UNKNOWNS:[],DIMNSN:MI(LENGTH(MAT)),
COUNT:MI(DIMNSN),notknwn:?gensym(),
IF KNOWNEIGVALS THEN EIGVALS:LISTEIGVALS
ELSE EIGVALS:EIGENVALUES(MAT),
IF EIGVALS=[] THEN (NONDIAGONALIZABLE:TRUE,RETURN(EIGVALS))
ELSE (MULTIPLICITIES:PART(EIGVALS,2),
FOR INDEX1 THRU DIMNSN DO
UNKNOWNS:ENDCONS(concat(notknwn,index1),UNKNOWNS),
VECTR:COLUMNVECTOR(UNKNOWNS),MATRX:MAT.VECTR,
NONDIAGONALIZABLE:FALSE,
LISTALL:[EIGVALS],REALONLY:FALSE,ALGEBRAIC:TRUE,
FOR INDEX1 THRU COUNT DO
(COUNT:MI(COUNT-PART(MULTIPLICITIES,INDEX1)+1),
MMATRX:MATRX-PART(EIGVALS,1,INDEX1)*VECTR,
EQUATIONS:[],
FOR INDEX2 THRU DIMNSN DO
EQUATIONS:CONS(MMATRX[INDEX2,1],EQUATIONS),%RNUM:0,
SOLUTION:ALGSYS(EQUATIONS,UNKNOWNS),
INTERM:MAP('RHS,SOLUTION[1]),
UNIT:[],IF %RNUM#PART(MULTIPLICITIES,INDEX1)
THEN NONDIAGONALIZABLE:TRUE,
FOR INDEX3 THRU %RNUM DO
(INTERN:SUBSTVECTK(%RNUM_LIST,INDEX3,INTERM),
UNIT:APPEND(UNIT,[INTERN])),
IF UNIT=[] THEN
(PRINT(" "),PRINT("ALGSYS failure: The eigenvector(s) for the",
INDEX1,"th eigenvalue will be missing.")),
IF HERMITIANMATRIX AND %RNUM>1 THEN UNIT:GRAMSCHMIDT(UNIT),
LISTALL:APPEND(LISTALL,UNIT)),
RETURN(LISTALL)))$
/* The first arg is of the form [r1,r2,r3].
We want to construct [r1=0,r2=1,r3=0] for example. */
SUBSTVECTK(L,N,EXP):=(mode_declare(l,list,n,fixnum,exp,any),
BLOCK([SUB_LIST:[],J:0],mode_declare(sub_list,list,j,fixnum),
FOR VAR IN L DO (mode_declare(var,any),
J:J+1,SUB_LIST:CONS(VAR = IF J=N THEN 1 ELSE 0,SUB_LIST)),
SUBLIS(SUB_LIST,EXP)))$
UNITEIGENVECTORS(MAT):=
BLOCK([LISTUEVEC,LISTALL,INDEX1,UNIT],
mode_declare([listuevec,listall],list,index1,fixnum,unit,any),
IF KNOWNEIGVECTS THEN LISTUEVEC:LISTEIGVECTS
ELSE LISTUEVEC:EIGENVECTORS(MAT),
IF LISTUEVEC=[] THEN RETURN(LISTUEVEC)
ELSE (LISTALL:[PART(LISTUEVEC,1)],
FOR INDEX1:2 THRU LENGTH(LISTUEVEC) DO
(UNIT:PART(LISTUEVEC,INDEX1),
UNIT:RATSIMP(UNITVECTOR(UNIT)),
LISTALL:ENDCONS(UNIT,LISTALL)),
RETURN(LISTALL)))$
SIMILARITYTRANSFORM(MAT):=
BLOCK([LISTVEC,LISTUEVEC],
mode_declare([listvec,listuevec],list),
LISTUEVEC:UNITEIGENVECTORS(MAT),
IF NONDIAGONALIZABLE THEN RETURN(LISTUEVEC)
ELSE (LISTVEC:DELETE(PART(LISTUEVEC,1),LISTUEVEC),
RIGHTMATRIX:TRANSPOSE(APPLY('MATRIX,LISTVEC)),
IF HERMITIANMATRIX THEN
LEFTMATRIX:CONJUGATE(TRANSPOSE(RIGHTMATRIX))
ELSE LEFTMATRIX:RIGHTMATRIX^^-1,
RETURN(LISTUEVEC)))$
CONJ(X):=CONJUGATE(X)$
INPROD(X,Y):=INNERPRODUCT(X,Y)$
UVECT(X):=UNITVECTOR(X)$
COVECT(X):=COLUMNVECTOR(X)$
GSCHMIT(X):=GRAMSCHMIDT(X)$
EIVALS(MAT):=EIGENVALUES(MAT)$
EIVECTS(MAT):=EIGENVECTORS(MAT)$
UEIVECTS(MAT):=UNITEIGENVECTORS(MAT)$
SIMTRAN(MAT):=SIMILARITYTRANSFORM(MAT)$
|