1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
|
;;; -*- Mode:LISP; Package:MACSYMA -*-
;; (based on itensor.116 ,117)
(in-package "MAXIMA")
(macsyma-module itensor) ;; added 9/24/82 at UCB
; ** (c) Copyright 1981 Massachusetts Institute of Technology **
; Various functions in Itensr have been parceled out to separate files. A
; function in one of these files will only be loaded in (automatically) if
; explicitly used in the Macsyma. (It is necessary to have first loaded in
; ITENSR FASL for this autoloading to take place.) The current status of
; these separate files are:
; Filename Macsyma Functions
; -------- -----------------
; CANTEN FASL CANTEN, CONCAN, IRPMON
; GENER FASL GENERATE, MAKEBOX, AVERAGE, CONMETDERIV, FLUSH1DERIV,
; GEODESIC
; SYMTRY FASL CANFORM, DECSYM, DISPSYM, REMSYM
#+maclisp(progn
(putprop '$GENERATE '((dsk tensor) gener fasl) 'autoload)
(putprop '$DECSYM '((dsk tensor) symtry fasl) 'autoload)
(putprop '$CANFORM '((dsk tensor) symtry fasl) 'autoload)
(putprop '$CANTEN '((dsk tensor) canten fasl) 'autoload)
(putprop '$MAKEBOX '((dsk tensor) gener fasl) 'autoload)
(putprop '$GEODESIC '((dsk tensor) gener fasl) 'autoload)
(putprop '$CONMETDERIV '((dsk tensor) gener fasl) 'autoload))
#+Franz (progn
(putprop '$GENERATE (concat vaxima-main-dir '|//tensor//gener|) 'autoload)
(putprop '$DECSYM (concat vaxima-main-dir '|//tensor//symtry| )'autoload)
(putprop '$CANFORM (concat vaxima-main-dir '|//tensor//symtry| )'autoload)
(putprop '$CANTEN (concat vaxima-main-dir '|//tensor//canten| )'autoload)
(putprop '$MAKEBOX (concat vaxima-main-dir '|//tensor//gener| )'autoload)
(putprop '$GEODESIC (concat vaxima-main-dir '|//tensor//gener| )'autoload)
(putprop '$CONMETDERIV (concat vaxima-main-dir '|//tensor//gener| )'autoload))
#+cl
(progn
(autof '$GENERATE '|gener|)
(autof '$DECSYM '|symtry|)
(autof '$CANFORM '|symtry|)
(autof '$CANTEN '|canten|)
(autof '$MAKEBOX '|gener|)
(autof '$GEODESIC '|gener|)
(autof '$CONMETDERIV '|gener|)
(autof '$NAME '|canten|)
(autof '$CONTI '|canten|)
(autof '$COVI '|canten|)
(autof '$DERI '|canten|)
)
#+cl
(eval-when (eval compile)
(defmacro fixp (x) `(typep ,x 'fixnum)))
#+maclisp ($UUO) ;Restore calls to SDIFF so it can be redefined
(DECLARE-TOP (SPECIAL SMLIST $DUMMYX $COORDINATES $METRIC $COUNTER $DIM
$CONTRACTIONS $COORD $ALLSYM $METRICCONVERT)
(*LEXPR $RENAME $DIFF $COORD $REMCOORD $LORENTZ))
(SETQ $DUMMYX '$% ;Prefix for dummy indices
$COUNTER 0. ;Dummy variable numeric indexs
SMLIST '(MLIST SIMP) ;Simplified MLIST header
$COORDINATES NIL ;Used when differentiating w.r.t. a number
$COORD '((MLIST SIMP)) ;Objects treated liked coordinates in DIFF
$ALLSYM T ;If T then all indexed objects symmetric
$METRICCONVERT T) ;Flag used by $GENERATE
;(DEFUN IFNOT MACRO (CLAUSE) (CONS 'OR (CDR CLAUSE)))
(DEFmacro IFNOT (&rest CLAUSE) `(or ,@ clause))
;(DEFUN M+OR*OR^P MACRO (CL)
(defmacro M+OR*OR^P (&whole cl &rest ign) ign
(SUBST (CADR CL)
'X
'(MEMQ (CAAR X) '(MTIMES MPLUS MEXPT))))
(DEFMFUN $DUMMY nil ;Sets arguments to dummy indices
(progn (setq $COUNTER (1+ $COUNTER))
(concat $DUMMYX $COUNTER)))
(DEFPROP $KDELTA ((/ . / )) CONTRACTIONS)
;KDELTA has special contraction property because it contracts with any indexed
;object.
(meval '(($DECLARE) %KDELTA $CONSTANT)) ;So derivative will be zero
(SETQ $DIM 4. $CONTRACTIONS '((MLIST SIMP)))
(DEFMFUN $DEFCON N ;Defines contractions: A contracts with B to form C
((LAMBDA (A)
(ADD2LNC A $CONTRACTIONS)
(PUTPROP
A
(CONS (COND ((= N 1.) '(/ . / ))
((= N 3.) (CONS (ARG 2.) (ARG 3.)))
(T (merror "DEFCON takes 1 or 3 arguments")))
(ZL-GET A 'CONTRACTIONS))
'CONTRACTIONS)
'$DONE)
(ARG 1.)))
(DEFMSPEC $DISPCON (A) (SETQ A (CDR A))
;;Displays contraction definitions
((LAMBDA (TMP)
(AND (EQ (CAR A) '$ALL) (SETQ A (CDR $CONTRACTIONS)))
(CONS
SMLIST
(MAPCAR
#'(LAMBDA (E)
(COND ((SETQ TMP (ZL-GET E 'CONTRACTIONS))
(CONS SMLIST
(MAPCAR #'(LAMBDA (Z)
(COND ((EQ (CAR Z)
'/ )
(LIST SMLIST E))
(T (LIST SMLIST
E
(CAR Z)
(CDR Z)))))
TMP)))
(T '((MLIST SIMP)))))
A)))
NIL))
(DEFMSPEC $REMCON (A) (SETQ A (CDR A))
;;Removes contraction definitions
(AND (EQ (CAR A) '$ALL) (SETQ A (CDR $CONTRACTIONS)))
(CONS SMLIST (MAPC (FUNCTION (LAMBDA (E) (ZL-REMPROP E 'CONTRACTIONS)
(DELQ E $CONTRACTIONS)))
A)))
(DEFUN GETCON (E)
;; Helper to obtain contractions on both the noun and verb form of E
(COND ((AND (SYMBOLP E) (EQ (GETCHAR E 1) '%)) (ZL-GET ($VERBIFY E) 'CONTRACTIONS))
(T (ZL-GET E 'CONTRACTIONS))
)
)
(DEFUN RPOBJ (E) ;"True" if an indexed object and not a matrix
(COND ((AND (NOT (ATOM E)) (EQ (CAAR E) 'MQAPPLY)) (RPOBJ (CDR E)))
(T
(AND (NOT (ATOM E))
(NOT (EQ (CAAR E) '$MATRIX))
($LISTP (CADR E))
(COND ((CDDR E) ($LISTP (CADDR E)))
(T (NCONC E '(((MLIST SIMP))))))))))
;Transforms F([...]) into F([...],[])
;RPOBJ is the predicate for indexed objects. In the case of no contravariant
;components, it tacks a null list on.
(deff $tenpr #'rpobj)
(DEFMFUN $METRIC (V) (SETQ $METRIC V) ($DEFCON V) ($DEFCON V V '$KDELTA))
(DEFUN MYSUBST0 (NEW OLD) ;To reuse subparts of old expression
(COND ((ALIKE1 NEW OLD) OLD) (T NEW)))
(DEFUN COV (A B) ;COV gives covariant form of metric
(COND ((BOUNDP '$METRIC)
(MEVAL (LIST (NCONS $METRIC)
(LIST SMLIST A B)
'((MLIST SIMP)))))
(T (merror "Name of metric must be specified"))))
(DEFUN CONTR (A B) ;CONTR gives contraviant form of metric
(COND ((BOUNDP '$METRIC)
(MEVAL (LIST (NCONS $METRIC)
'((MLIST SIMP))
(LIST SMLIST A B))))
(T (merror "Name of metric must be specified"))))
(DEFUN DIFFCOV (A B D)
(COND ((BOUNDP '$METRIC)
(MEVAL (LIST (NCONS $METRIC)
(LIST SMLIST A B)
'((MLIST SIMP))
D
)
))
(T (merror "Name of metric must be specified"))))
;(DEFMFUN $CHR1 (L1) ;Christoffel symbol of first kind
; (PROG (A B C)
; (SETQ A (CADDDR L1) B (CADR L1) C (CADDR L1))
; (RETURN (LIST '(MTIMES)
; '((RAT SIMP) 1. 2.)
; (LIST '(MPLUS)
; (SDIFF (COV B A) C)
; (SDIFF (COV C A) B)
; (LIST '(MTIMES)
; -1.
; (SDIFF (COV B C) A)))))))
(DEFMFUN $CHR1 NARGS
(PROG (A B C)
(COND
; ((> NARGS 2) (RETURN (MEVAL (CONS '$COVDIFF (CONS ($CHR1 (ARG 1) (ARG 2)) (CDDR (LISTIFY NARGS)))))))
((> NARGS 2) (RETURN (MEVAL (CONS '$DIFF (CONS ($CHR1 (ARG 1) (ARG 2)) (APPLY #'APPEND (MAPCAR #'(LAMBDA (E) (LIST E 1)) (CDDR (LISTIFY NARGS)))))))))
((> NARGS 1) (AND (EQ 1 (LENGTH (ARG 2))) (RETURN ($CHR1 (ARG 1))))
(merror "CHR1 cannot have contravariant indices"))
;; (COND
;; ((NULL (ARG 2)) (merror "CHR1 has no contravariant indices"))
;; (T (RETURN ($CHR1 (ARG 1))))
;; )
;; )
(T
(SETQ A (CADDDR (ARG 1)) B (CADR (ARG 1)) C (CADDR (ARG 1)))
(RETURN (LIST '(MTIMES)
'((RAT SIMP) 1. 2.)
(LIST '(MPLUS)
;; (SDIFF (COV B A) C)
;; (SDIFF (COV C A) B)
(DIFFCOV B A C)
(DIFFCOV C A B)
(LIST '(MTIMES) -1.
;; (SDIFF (COV B C) A))))))
(DIFFCOV B C A))))))
)
)
)
;(DEFMFUN $CHR2 (L1 L2) ;Christoffel symbol of second kind
; (PROG (A B C D)
; (SETQ A (CADR L1) B (CADDR L1) C (CADR L2))
; (return (do ((flag) (l (append (cdr l1) (cdr l2))))
; (flag (LIST '(MTIMES)
; (CONTR C D)
; ($CHR1 (LIST SMLIST A B D))))
; (setq d ($dummy))
; (and (not (memq d l)) (setq flag t))))))
(DEFMFUN $CHR2 NARGS
(PROG (A B C D)
(COND
((> NARGS 2) (RETURN (MEVAL (CONS '$DIFF (CONS ($CHR2 (ARG 1) (ARG 2)) (APPLY #'APPEND (MAPCAR #'(LAMBDA (E) (LIST E 1)) (CDDR (LISTIFY NARGS)))))))))
(T
(SETQ A (CADR (ARG 1)) B (CADDR (ARG 1)) C (CADR (ARG 2)))
(return (do ((flag) (l (append (cdr (ARG 1)) (cdr (ARG 2)))))
(flag (LIST '(MTIMES)
(CONTR C D)
($CHR1 (LIST SMLIST A B D))))
(setq d ($dummy))
(and (not (memq d l)) (setq flag t))))))
)
)
(DEFMFUN $curvature (L1 L2)
(PROG (I J K H R)
(setq r ($dummy))
(SETQ I (CADR L1) K (CADDR L1) H (CADDDR L1) J (CADR L2))
(RETURN (LIST '(MPLUS)
(SDIFF (LIST '($CHR2 SIMP)
(LIST SMLIST I K)
L2)
H)
(LIST '(MTIMES)
-1.
(SDIFF (LIST '($CHR2 SIMP)
(LIST SMLIST I H)
(LIST SMLIST J))
K))
(LIST '(MTIMES)
(LIST '($CHR2 SIMP)
(LIST SMLIST I K)
(LIST SMLIST R))
(LIST '($CHR2 SIMP)
(LIST SMLIST R H)
L2))
(LIST '(MTIMES)
-1.
(LIST '($CHR2 SIMP)
(LIST SMLIST I H)
(LIST SMLIST R))
(LIST '($CHR2 SIMP)
(LIST SMLIST R K)
L2))))))
(DEFUN COVSUBST (X Y RP) ;Substitutes X for Y in the covariant part of RP
(CONS (CAR RP) (CONS (SUBST X Y (CADR RP)) (CDDR RP))))
(DEFUN CONSUBST (X Y RP) ;Substitutes X for Y in the contravariant part of RP
(CONS (CAR RP)
(CONS (CADR RP)
(CONS (SUBST X Y (CADDR RP)) (CDDDR RP)))))
(DEFUN DERSUBST (X Y RP) ;Substitutes X for Y in the derivative indices of RP
(NCONC (LIST (CAR RP) (CADR RP) (CADDR RP))
(SUBST X Y (CDDDR RP))))
(DECLARE-TOP (SPECIAL X TEMP D))
(DEFMFUN $COVDIFF NARGS
(PROG (X E TEMP D I)
(AND (< NARGS 2) (merror "COVDIFF must have at least 2 args"))
(SETQ I 2 E (ARG 1))
AGAIN (SETQ X (ARG I) E (COVDIFF E) I (1+ I))
(AND (> I NARGS) (RETURN E))
(GO AGAIN)))
(DEFUN COVDIFF (E)
(setq d ($dummy))
(COND
((OR (ATOM E) (EQ (CAAR E) 'RAT)) (SDIFF E X))
((RPOBJ E)
(SETQ TEMP (MAPCAR #'(LAMBDA (V) (LIST '(MTIMES)
(LIST '($CHR2 SIMP)
(LIST SMLIST D X)
(LIST SMLIST V))
(CONSUBST D V E)))
(CDADDR E)))
(SIMPLUS
(CONS
'(MPLUS)
(CONS
(SDIFF E X)
(COND
((OR (CDADR E) (CDDDR E))
(CONS
(LIST
'(MTIMES)
-1.
(CONS '(MPLUS)
(NCONC (MAPCAR #'(LAMBDA (V)
(LIST '(MTIMES)
(LIST '($CHR2 SIMP)
(LIST SMLIST
V
X)
(LIST SMLIST
D))
(COVSUBST D V E)))
(CDADR E))
(MAPCAR #'(LAMBDA (V)
(LIST '(MTIMES)
(LIST '($CHR2 SIMP)
(LIST SMLIST
V
X)
(LIST SMLIST
D))
(DERSUBST D V E)))
(CDDDR E)))))
TEMP))
(T TEMP))))
1.
T))
((EQ (CAAR E) 'MTIMES) (SIMPLUS (COVDIFFTIMES (CDR E) X) 1 T))
((EQ (CAAR E) 'MPLUS)
(SIMPLIFYA (CONS '(MPLUS)
(MAPCAR 'COVDIFF (CDR E)))
NIL))
((EQ (CAAR E) 'MEXPT)
(SIMPTIMES (LIST '(MTIMES)
(CADDR E)
(LIST '(MEXPT)
(CADR E)
(LIST '(MPLUS) -1. (CADDR E)))
($COVDIFF (CADR E) X))
1.
NIL))
((EQ (CAAR E) 'MEQUAL)
(LIST (CAR E) (COVDIFF (CADR E)) (COVDIFF (CADDR E))))
(T
(MERROR "Not acceptable to COVDIFF: ~M"
(ISHOW E)))))
(DEFUN COVDIFFTIMES (L X)
(PROG (SP LEFT OUT)
(SETQ OUT (NCONS '(MPLUS)))
LOOP (SETQ SP (CAR L) L (CDR L))
(NCONC OUT
(LIST (SIMPTIMES (CONS '(MTIMES)
(CONS ($COVDIFF SP X)
(APPEND LEFT L)))
1.
T)))
(COND ((NULL L) (RETURN OUT)))
(SETQ LEFT (NCONC LEFT (NCONS SP)))
(GO LOOP)))
(DECLARE-TOP (UNSPECIAL R TEMP D))
(DEFMFUN $LORENTZ n
(cond ((equal n 0) (merror "LORENTZ requires at least one argument"))
((equal n 1) (lorentz (arg 1) nil))
(t (lorentz (arg 1)
((lambda (l) (cond ((sloop for v in l
always (symbolp v)) l)
(t (merror
"Invalid tensor name(s) in argument to LORENTZ"))))
(listify (f- 1 n)))))))
;Lorentz contraction of E: indexed objects with a derivative index matching a
;contravariant index become 0. If L is NIL then do this for all indexed objects
;otherwise do this only for those indexed objects whose names are members of L.
(defun LORENTZ (e l)
(cond ((atom e) e)
((rpobj e)
(cond ((and (or (null l) (memq (caar e) l))
(intersect (cdaddr e) (cdddr e)))
0.)
(t e)))
(t (mysubst0
(simplifya
(cons (ncons (caar e))
(mapcar (function (lambda (q) (lorentz q l)))
(cdr e)))
t) e))))
(DEFUN LESS (X Y) ;Alphanumeric compare
(COND ((NUMBERP X)
(COND ((NUMBERP Y) (< X Y))
(T (ALPHALESSP (ASCII X) Y))))
(T (COND ((NUMBERP Y) (ALPHALESSP X (ASCII Y)))
(T (ALPHALESSP X Y))))))
(DECLARE-TOP (SPECIAL CHRISTOFFELS))
(SETQ CHRISTOFFELS '($CHR2 $CHR1 %CHR2 %CHR1))
(DEFMFUN $CONTRACT (E) ;Main contraction function
(COND ((ATOM E) E)
((RPOBJ E) (CONTRACT5 E))
((EQ (CAAR E) 'MTIMES)
(MYSUBST0 (SIMPLIFYA (CONS '(MTIMES) (CONTRACT4 E))
T)
E))
((EQ (CAAR E) 'MPLUS)
(MYSUBST0 (SIMPLUS (CONS '(MPLUS)
(MAPCAR '$CONTRACT
(CDR E)))
1.
T)
E))
(T (MYSUBST0 (SIMPLIFYA (CONS (CAR E) (MAPCAR '$CONTRACT (CDR E)))
NIL) E))))
(DEFUN CONTRACT5 (E)
((LAMBDA (K) (COND ((AND (NOT (MEMQ (CAAR E) CHRISTOFFELS)) K)
(NCONC (LIST (CAR E)
(CONS SMLIST (CAR K))
(CONS SMLIST (CDR K)))
(CDDDR E)))
(T E)))
(CONTRACT2 (CDADR E) (CDADDR E))))
;L1 and L2 are lists. This function removes all like members from L1 and L2 and
;returns their cons or returns NIL if there aren't any like members.
(DEFUN CONTRACT2 (L1 L2)
((LAMBDA (I) (AND I (CONS (SETDIFF L1 I) (SETDIFF L2 I))))
(INTERSECT L1 L2)))
(DEFUN SETDIFF (S1 S2) ;Set difference of S1 and S2
(DO ((J S1 (CDR J)) (A))
((NULL J) A)
(OR (AND (NOT (NUMBERP (CAR J))) (MEMQ (CAR J) S2)) (SETQ A (CONS (CAR J) A)))))
(DEFUN CONTRACT3 (IT LST) ;Tries to contract IT with some element of LST.
(PROG (FRST R REST) ;If none occurs then return NIL otherwise return
;a list whose first member is the result of
;contraction and whose cdr is a top-level copy
;of LST with the element which contracted
;removed.
LOOP (SETQ FRST (CAR LST) LST (CDR LST))
;; (AND (EQ (CAAR FRST) '%KDELTA) (GO SKIP))
(AND (SETQ R (CONTRACT1 IT FRST))
(RETURN (CONS R (NCONC (NREVERSE REST) LST))))
;Try contraction in reverse order since the
;operation is commutative.
;; SKIP (AND (ZL-GET (CAAR FRST) 'CONTRACTIONS)
SKIP (AND (GETCON (CAAR FRST))
(SETQ R (CONTRACT1 FRST IT))
(RETURN (CONS R (NCONC (NREVERSE REST) LST))))
(AND (NULL LST) (RETURN NIL))
(SETQ REST (CONS FRST REST))
(GO LOOP)))
(DEFUN CONTRACT4 (L) ;Contracts products
(PROG (L1 L2 L3 F CL SF)
(SETQ CL (CDR L)) ;Following loop sets up 3 lists from the factors
;on L: L1 - atoms or the contraction of non
;indexed objects (the contraction is to handle
;sub-expressions in case E is not fully expanded
;as in A*B*(C*D+E*F). ), L2 - indexed objects in
;L with contraction property, L3 - indexed
;objects in L without contraction property
AGAIN(SETQ F (CAR CL) CL (CDR CL))
(COND ((ATOM F) (SETQ L1 (CONS F L1)))
((RPOBJ F)
(SETQ F (CONTRACT5 F))
;; (COND ((ZL-GET (CAAR F) 'CONTRACTIONS)
(COND ((GETCON (CAAR F))
(SETQ L2 (CONS F L2)))
(T (SETQ L3 (CONS F L3)))))
(T (SETQ L1 (CONS ($CONTRACT F) L1))))
(AND CL (GO AGAIN))
(AND (NULL L2) (RETURN (NCONC L1 L3)))
(AND (NULL (CDR L2)) (SETQ CL L2) (GO LOOP2+1))
;If L2 is empty then no more contractions are
;needed. If L2 has only 1 member then just
;contract it with L3 otherwise contract the
;members of L2 with themselves. The following
;loop goes down L2 trying to contract members
;with other members according to the following
;method: moving from front to end take current
;member (F) and see if it contracts with any
;elements in the rest of the list (this is done
;by CONTRACT3). If it doesn't then add it to CL.
;If it does then take result of contraction and
;add to L1, L2, or L3 as above.
LOOP1(SETQ F (CAR L2) L2 (CDR L2))
(COND ((NULL (SETQ SF (CONTRACT3 F L2)))
(SETQ CL (CONS F CL)))
(T (SETQ L2 (CDR SF) SF (CAR SF))
(COND ((ATOM SF) (SETQ L1 (CONS SF L1)))
((RPOBJ SF)
;; (COND ((ZL-GET (CAAR SF)
;; 'CONTRACTIONS)
(COND ((GETCON (CAAR SF))
(SETQ L2 (CONS SF L2)))
(T (SETQ L3 (CONS SF L3)))))
(T (SETQ L1 (CONS SF L1))))))
;If L2 has at least 2 elements left then
;continue loop. If L2 has 1 element and CL
;is not empty and there were some contractions
;performed last time then add CL to L2 and try
;again. Otherwise add L2 to CL and quit.
(AND L2
(COND ((CDR L2) (GO LOOP1))
((AND CL SF)
(SETQ SF NIL L2 (CONS (CAR L2) CL) CL NIL)
(GO LOOP1))
(T (SETQ CL (NCONC L2 CL)))))
;The following loop goes down CL trying to
;contract each member with some member in L3. If
;there is not a contraction then the element
;from CL is added onto L3 (this causes elements
;of CL to be contracted with each other). If
;there is a contraction then the result is added
;onto L3 by setting L3 to the result of
;CONTRACT3 here if CL is known not to be null.
;If L3 is empty then there is nothing left to
;contract.
LOOP2(AND (NULL CL) (RETURN (NCONC L1 L3)))
LOOP2+1
(AND (NULL L3) (RETURN (NCONC L1 CL)))
(SETQ F (CAR CL) CL (CDR CL))
(COND ((SETQ SF (CONTRACT3 F L3)) (SETQ L3 SF))
(T (SETQ L3 (CONS F L3))))
(GO LOOP2)))
(DEFUN CONTRACT1 (F G) ;This does the actual contraction of F with G.
(PROG (A B C D E CF) ;If f has any derivative indices then it can't
;contract G. If F is Kronecker delta then see
;which of the covariant, contravariant, or
;derivative indices matches those in G.
(WHEN (CDDDR F) (RETURN NIL))
(SETQ A (CDADR F)
B (CDADDR F)
C (CADR G)
D (CADDR G)
E (CDDDR G))
(COND
((OR (EQ (CAAR F) '%KDELTA) (EQ (CAAR F) '$KDELTA))
(AND (> (LENGTH A) 1) (RETURN NIL))
(SETQ A (CAR A) B (CAR B))
(RETURN
(SIMPLIFYA (COND ((AND (CDR C) (AND (NOT (NUMBERP B)) (MEMQ B (CDR C))))
(SETQ C (SUBST A B (CDR C)))
(AND (NOT (MEMQ (CAAR G) CHRISTOFFELS))
(CDR D)
(SETQ A (CONTRACT2 C (CDR D)))
(SETQ C (CAR A)
D (CONS SMLIST (CDR A))))
(NCONC (LIST (CAR G)
(CONS SMLIST C)
D)
E))
((AND E (AND (NOT (NUMBERP B)) (MEMQ B E)))
(NCONC (LIST (CAR G) C D)
(itensor-SORT (SUBST A B E))))
((AND (CDR D) (AND (NOT (NUMBERP A)) (MEMQ A (CDR D))))
(SETQ D (SUBST B A (CDR D)))
(AND (CDR C)
(SETQ A (CONTRACT2 (CDR C) D))
(SETQ D (CDR A)
C (CONS SMLIST (CAR A))))
(NCONC (LIST (CAR G)
C
(CONS SMLIST D))
E))
(T NIL))
NIL))))
;; VTT: No tensor should be able to contract LC or KDELTA.
(AND (OR (EQ (CAAR G) '$KDELTA) (EQ (CAAR G) '%KDELTA) (EQ (CAAR G) '$LC) (EQ (CAAR G) '%LC)) (RETURN NIL))
;If G has derivative indices then F must be
(and e ;constant in order to contract it.
(NOT (MGET (CAAR F) '$CONSTANT))
(RETURN NIL))
;Contraction property of F is a list of (A.B)'S
;; (COND ((SETQ CF (ZL-GET (CAAR F) 'CONTRACTIONS)))
(COND ((SETQ CF (GETCON (CAAR F))))
(T (RETURN NIL)))
;If G matches an A then use the B for name of result.
;If an A is a space use name of G for result.
MORE (COND ((EQ (CAAR CF) '/ ) (SETQ CF (CAR G)))
((EQ (CAAR CF) (CAAR G))
(SETQ CF (NCONS (CDAR CF))))
(T (OR (SETQ CF (CDR CF)) (RETURN NIL)) (GO MORE)))
(SETQ C (CDR C) D (CDR D))
;If CONTRACT2 of F's contravariant and G's
;covariant or F's covariant and G's
;contravariant indicies is NIL then return NIL.
(COND ((AND B C (SETQ F (CONTRACT2 B C)))
(SETQ B (CAR F) C (CDR F)))
((AND A D (SETQ F (CONTRACT2 A D)))
(SETQ A (CAR F) D (CDR F)))
(T (RETURN NIL)))
;Form combined indices of result
(AND D (SETQ B (APPEND B D)))
(AND C (SETQ A (APPEND C A)))
;Zl-remove repeated indices
(AND (SETQ F (CONTRACT2 A B)) (SETQ A (CAR F) B (CDR F)))
;; VTT: Special handling of Christoffel symbols. We can only contract them
;; when we turn CHR1 into CHR2 or vice versa; other index combinations are
;; illegal. This code checks if the index pattern is a valid one and replaces
;; CHR1 with CHR2 or vice versa as appropriate.
(COND ((OR (EQ (CAR CF) '$CHR1) (EQ (CAR CF) '%CHR1))
(COND ((AND (EQ (LENGTH A) 2) (EQ (LENGTH B) 1))
(SETQ CF (CONS (COND ((EQ (CAR CF) '$CHR1) '$CHR2) (T '%CHR2)) (CDR CF))))
((NOT (AND (EQ (LENGTH A) 3) (EQ (LENGTH B) 0))) (RETURN NIL)))
)
((OR (EQ (CAR CF) '$CHR2) (EQ (CAR CF) '%CHR2))
(COND ((AND (EQ (LENGTH A) 3) (EQ (LENGTH B) 0))
(SETQ CF (CONS (COND ((EQ (CAR CF) '$CHR2) '$CHR1) (T '%CHR1)) (CDR CF)))
)
((NOT (AND (EQ (LENGTH A) 2) (EQ (LENGTH B) 1))) (RETURN NIL)))
)
)
(SETQ F (MEVAL (LIST CF (CONS SMLIST A) (CONS SMLIST B))))
(AND E
; (DO E E (CDR E)
; (NULL E)
; (SETQ F (SDIFF F (CAR E))))
(DO ((E E (CDR E)))
((NULL E) )
(SETQ F (SDIFF F (CAR E))))
)
(RETURN F)))
(DEFMFUN $UNDIFF (X)
(COND ((ATOM X) X)
((RPOBJ X)
(COND ((CDDDR X)
(NCONC (LIST '(%DERIVATIVE)
(LIST (CAR X) (CADR X) (CADDR X)))
(PUTINONES (CDDDR X))))
(T X)))
(T
(MYSUBST0 (SIMPLIFYA (CONS (NCONS (CAAR X))
(MAPCAR '$UNDIFF (CDR X)))
T) X))))
(DEFUN PUTINONES (E)
(COND ((CDR E) (CONS (CAR E) (CONS 1. (PUTINONES (CDR E)))))
(T (LIST (CAR E) 1.))))
(DEFMFUN $KDELTA (L1 L2)
(COND ((NULL (AND ($LISTP L1)
($LISTP L2)
(= (LENGTH L1) (LENGTH L2))))
(merror "Improper arg to DELTA: ~M"
(LIST '(%KDELTA) L1 L2)
))
(T (DELTA (CDR L1) (CDR L2)))))
;kdels defines the symmetric combination of the Kronecker symbols
(DEFMFUN $KDELS (L1 L2)
(COND ((NULL (AND ($LISTP L1)
($LISTP L2)
(= (LENGTH L1) (LENGTH L2))))
(merror "Improper arg to DELTA: ~M"
(LIST '(%KDELS) L1 L2)
))
(T (DELTA (CDR L1) (CDR L2) 1))))
;;
;;(DECLARE-TOP (FIXNUM I))
;;
;;(DEFUN DELTA (LOWER UPPER &optional (eps -1))
;; (COND ((NULL LOWER) $DIM)
;; ((NULL (CDR LOWER))
;; (COND ((EQUAL (CAR UPPER) (CAR LOWER))
;; (COND ((NUMBERP (CAR UPPER)) 1.) (T $DIM)))
;; ((AND (NUMBERP (CAR UPPER)) (NUMBERP (CAR LOWER))) 0.)
;; (T (LIST '(%KDELTA)
;; (CONS SMLIST LOWER)
;; (CONS SMLIST UPPER)))))
;; (T (DO ((I (LENGTH LOWER) (1- I))
;; (SL LOWER)
;; (TERM)
;; (RESULT)
;; (F (NCONS (CAR UPPER)))
;; (R (CDR UPPER))
;; (SIGN (ODDP (LENGTH LOWER))))
;; ((= I 0.)
;; (SIMPLUS (CONS '(MPLUS) RESULT) 1. T))
;; (SETQ TERM (LIST (DELTA (NCONS (CAR SL)) F eps)
;; (DELTA (CDR SL) R eps)))
;; (SETQ SL (CDR (APPEND SL (NCONS (CAR SL)))))
;; (SETQ RESULT
;; (CONS (SIMPTIMES (CONS '(MTIMES)
;; (COND ((OR SIGN
;; (ODDP I))
;; (CONS eps
;; TERM))
;; (T TERM)))
;; 1.
;; NIL)
;; RESULT))))))
(DEFUN DELTA (LOWER UPPER &optional (eps -1))
(COND ((NULL LOWER) $DIM)
((NULL (CDR LOWER))
(COND ((EQUAL (CAR UPPER) (CAR LOWER))
(COND ((NUMBERP (CAR UPPER)) 1.) (T $DIM)))
((AND (NUMBERP (CAR UPPER)) (NUMBERP (CAR LOWER))) 0.)
(T (LIST '(%KDELTA) (CONS SMLIST LOWER) (CONS SMLIST UPPER)))))
(T (DO ((LEFT NIL (APPEND LEFT (NCONS (CAR RIGHT))))
(RIGHT LOWER (CDR RIGHT))
(RESULT))
((NULL RIGHT) (SIMPLUS (CONS '(MPLUS) RESULT) 1. T))
(SETQ RESULT (CONS (SIMPTIMES
(LIST '(MTIMES) (DELTA (NCONS (CAR RIGHT)) (NCONS (CAR UPPER)) eps)
(DELTA (APPEND LEFT (CDR RIGHT)) (CDR UPPER) eps)
(COND ((ODDP (LENGTH LEFT)) eps) (T 1))
) 1. T
) RESULT)
)))))
(DECLARE-TOP (NOTYPE I))
(DECLARE-TOP (SPECIAL $OUTCHAR $DISPFLAG LINELABLE FOOBAR DERIVLIST))
;Displays P([L1],[L2],I1,I2,...) by making the elements of L2 into a single
;atom which serves as the exponent and the elements of L1 and I1,I2,... into a
;single atom with a comma in between which serves as the subscript.
(DEFMFUN $SHOW (f)
(progn (makelabel $LINECHAR)
(cond ($DISPFLAG
(displa (list '(MLABLE) LINELABLE (ishow (specrepcheck f))))
; (setq $DISPFLAG nil)
))
(SET LINELABLE f)))
(DEFUN ISHOW (F)
((LAMBDA (FOOBAR) ;FOOBAR intialized to NIL
(COND ((ATOM F) F)
((RPOBJ F) ;If an indexed object ...
(SETQ FOOBAR
(COND ((OR (CDADR F) (CDDDR F)) ;If covariant or
(CONS (LIST (CAAR F) ;derivative indices
'ARRAY)
(NCONS (MAKNAM (CONS '$ (SPLICE (CDADR F)
(CDDDR F)))))))
(T (CAAR F))))
(COND ((CDADDR F) ;If contravariant indices
(LIST '(MEXPT SIMP)
FOOBAR
(CONS '(MTIMES SIMP) ;Make indices appear
(CDADDR F)))) ;as exponents for
(T FOOBAR))) ;proper display
(T
(CONS (CAR F) (MAPCAR 'ISHOW (CDR F))))))
NIL)) ;Map onto subparts of F
(DEFUN SPLICE (L1 L2)
(COND (L2 (SETQ L2 (CONS '|,| (SPLICE1 L2)))
(AND L1 (SETQ L2 (NCONC (SPLICE1 L1) L2)))
L2)
(T (SPLICE1 L1))))
(DEFUN SPLICE1 (L)
(COND ((NULL (CDR L))(SPLICE2 (CAR L)))
(T (NCONC (SPLICE2 (CAR L))(CONS '| | (SPLICE1 (CDR L)))))))
(DEFUN SPLICE2 (X)
(COND ((FIXP X)(EXPLODE X))
(T (CDR (EXPLODEc X)))))
(DEFUN DERIV (E)
(PROG (EXP Z COUNT V)
(COND ((NULL (CDR E)) (RETURN (STOTALDIFF (CAR E))))
((NULL (CDDR E)) (NCONC E '(1.))))
(SETQ EXP (CAR E) Z (SETQ E (APPEND E NIL)))
LOOP (COND ((OR (NULL DERIVLIST) (ZL-MEMBER (CADR Z) DERIVLIST))
(GO DOIT)))
;DERIVLIST is set by $EV
(SETQ Z (CDR Z))
LOOP2(COND ((CDR Z) (GO LOOP))
((NULL (CDR E)) (RETURN EXP))
(T (GO NOUN)))
DOIT (COND ((NULL (CDDR Z))
(merror "Wrong number of args to DERIVATIVE"))
((NOT (FIXP (SETQ COUNT (CADDR Z)))) (GO NOUN))
((< COUNT 0.)
(merror "Improper count to DIFF: ~M"
COUNT)))
LOOP1(SETQ V (CADR Z))
(AND (FIXP V)
$COORDINATES
(> V 0.)
(NOT (> V $DIM))
(SETQ V
(COND ((ATOM $COORDINATES)
(MEVAL1 (LIST (LIST $COORDINATES 'SIMP 'ARRAY)
V)))
((EQ (CAAR $COORDINATES) 'MLIST)
(COND ((NOT (< V
(LENGTH $COORDINATES)))
(merror
"Coordinate list too short for derivative index"))
(T (NTH V $COORDINATES))))
(T V))))
(COND ((ZEROP COUNT) (RPLACD Z (CDDDR Z)) (GO LOOP2))
((ZEROP1 (SETQ EXP (SDIFF EXP V))) (RETURN 0.)))
(SETQ COUNT (1- COUNT))
(GO LOOP1)
NOUN (RETURN (DIFF%DERIV (CONS EXP (CDR E))))))
(DEFUN CHAINRULE1 (E X) ; --YS 15.02.02
(PROG (Y)
(COND ((AND (ATOM E) (EQ (SETQ Y (CAR (MGET E 'DEPENDS)))
(CADR $COORD))) (RETURN (SUBST X Y (CHAINRULE E Y))))
(T (RETURN (CHAINRULE E X))))))
;Redefined so that the derivative of any indexed object appends on the
;coordinate index in sorted order unless the indexed object was declared
;constant in which case 0 is returned.
#+Franz (sstatus translink nil) ; make sdiff take hold
#+Franz (sstatus translink t)
(DEFUN SDIFF (E X)
(COND ((MNUMP E) 0.)
((ALIKE1 E X) 1.)
((OR (ATOM E) (MEMQ 'ARRAY (CDAR E)))
(CHAINRULE1 E X))
((MGET (CAAR E) '$CONSTANT) 0.) ;New line added
((EQ (CAAR E) 'MRAT) (RATDX E X))
((EQ (CAAR E) 'MPLUS)
(SIMPLUS (CONS '(MPLUS) (SDIFFMAP (CDR E) X))
1.
T))
((EQ (CAAR E) 'MEQUAL)
(LIST (CAR E) (SDIFF (CADR E) X) (SDIFF (CADDR E) X)))
((EQ (CAAR E) '$MATRIX)
(CONS (CAR E)
(MAPCAR
(FUNCTION (LAMBDA (Y)
(CONS (CAR Y)
(SDIFFMAP (CDR Y) X))))
(CDR E))))
((EQ (CAAR E) 'MTIMES)
(ADDN (SDIFFTIMES (CDR E) X) T))
((EQ (CAAR E) 'MEXPT) (DIFFEXPT E X))
((RPOBJ E) (DIFFRPOBJ E X)) ;New line added
((AND (BOUNDP '$METRIC) (EQ (CAAR E) '%DETERMINANT);New line added
(EQ (CADR E) $METRIC))
((LAMBDA (DUMMY)
(setq dummy ($dummy))
(COND ((EQ DUMMY X) (setq dummy ($dummy))))
(LIST '(MTIMES SIMP) 2. E
(LIST '($CHR2 SIMP) (CONS SMLIST (LIST DUMMY X))
(CONS SMLIST (NCONS DUMMY)))))
NIL))
((NOT (DEPENDS E X))
(COND ((FIXP X) (LIST '(%DERIVATIVE) E X))
((ATOM X) 0.)
(T (LIST '(%DERIVATIVE E X)))))
;This line moved down
((EQ (CAAR E) 'MNCTIMES)
(SIMPLUS (LIST '(MPLUS)
(LIST '(MNCTIMES)
(SDIFF (CADR E) X)
(CADDR E))
(LIST '(MNCTIMES)
(CADR E)
(SDIFF (CADDR E) X)))
1.
NIL))
((EQ (CAAR E) 'MNCEXPT) (DIFFNCEXPT E X))
((EQ (CAAR E) '%INTEGRATE) (DIFFINT E X))
((EQ (CAAR E) '%DERIVATIVE)
(COND ((OR (ATOM (CADR E))
(MEMQ 'ARRAY (CDAADR E)))
(CHAINRULE1 E X))
((FREEL (CDR E) X) 0.)
(T (DIFF%DERIV (LIST E X 1.)))))
((MEMQ (CAAR E) '(%SUM %PRODUCT)) (DIFFSUMPROD E X))
(T (SDIFFGRAD E X))))
(defun DIFFRPOBJ (e x) ;Derivative of an indexed object
(cond ((and (memq (caar e) $COORD) (null (cdadr e))
(equal (length (cdaddr e)) 1) (null (cdddr e)))
(delta (ncons x) (cdaddr e)))
(t (NCONC (LIST (CAR E) (CADR E) (CADDR E))
(COND ((NULL (CDDDR E)) (NCONS X))
(T (itensor-SORT (APPEND (CDDDR E) (NCONS X)))))))))
(DEFMFUN $LC0 (L1)
(PROG (A B C SIGN)
(SETQ A (CDR L1))
(IFNOT (AND A (CDR A)) (RETURN (LIST '(%LC) L1)))
(SETQ B A)
LOOP1(IFNOT (FIXP (CAR A)) (RETURN (LIST '(%LC) L1)))
(AND (SETQ A (CDR A)) (GO LOOP1))
LOOP3(SETQ A (CAR B) B (CDR B) C B)
LOOP2(COND ((= (CAR C) A) (RETURN 0.))
((< (CAR C) A) (SETQ SIGN (NOT SIGN))))
(AND (SETQ C (CDR C)) (GO LOOP2))
(AND (CDR B) (GO LOOP3))
(RETURN (COND (SIGN -1.) (T 1.)))))
(DEFMFUN $LC (L1 &optional (L2 nil))
(COND
((EQ L2 nil) ($LC0 L1))
((LIKE L1 '((MLIST)))
(PROG (l) (SETQ l nil)
(DO ((I ($LENGTH L2) (1- I))) ((< I 1)) (SETQ l (CONS I l)))
(RETURN (LIST '($KDELTA SIMP) (CONS SMLIST l) L2))
))
((LIKE L2 '((MLIST)))
(PROG (l) (SETQ l nil)
(DO ((I ($LENGTH L1) (1- I))) ((< I 1)) (SETQ l (CONS I l)))
(RETURN (LIST '($KDELTA SIMP) L1 (CONS SMLIST l)))
))
(T (MERROR "Mixed-index Levi-Civita symbols not supported"))
)
)
;; simplification rules for the totally antisymmetric LC symbol
(DEFUN $LC_L (E)
(PROG (L1 L2 L N)
(CATCH 'MATCH
(COND ((ATOM E) (MATCHERR)))
(COND ((ATOM (CAR E)) (MATCHERR)))
(COND ((NOT (OR (EQ (CAAR E) '$LC) (EQ (CAAR E) '%LC))) (MATCHERR)))
(COND ((NOT ($LISTP (SETQ L1 (CADR E)))) (MATCHERR)))
(COND ((NOT (ALIKE1 '((MLIST SIMP)) (SETQ L2 (CADDR E)))) (MATCHERR)))
(COND ((CDDDR E) (MATCHERR)))
(SETQ N ($LENGTH L1))
(SETQ L NIL)
(DO ((I N (1- I))) ((< I 1)) (SETQ l (CONS ($DUMMY) L)))
(RETURN (LIST '(MTIMES SIMP) -1 ($KDELTA L1 (CONS SMLIST L))
(LIST (CONS (CAAR E) '(SIMP)) (CONS SMLIST L) (NCONS SMLIST))
(LIST '(MEXPT SIMP) (MEVAL (LIST 'MFACTORIAL N)) -1))
)
)
)
)
(DEFUN $LC_U (E)
(PROG (L1 L2 L N)
(CATCH 'MATCH
(COND ((ATOM E) (MATCHERR)))
(COND ((ATOM (CAR E)) (MATCHERR)))
(COND ((NOT (OR (EQ (CAAR E) '$LC) (EQ (CAAR E) '%LC))) (MATCHERR)))
(COND ((NOT (ALIKE1 '((MLIST SIMP)) (SETQ L1 (CADR E)))) (MATCHERR)))
(COND ((NOT ($LISTP (SETQ L2 (CADDR E)))) (MATCHERR)))
(COND ((CDDDR E) (MATCHERR)))
(SETQ N ($LENGTH L2))
(SETQ L NIL)
(DO ((I N (1- I))) ((< I 1)) (SETQ l (CONS ($DUMMY) L)))
(RETURN (LIST '(MTIMES SIMP) -1 ($KDELTA (CONS SMLIST L) L2)
(LIST (CONS (CAAR E) '(SIMP)) (NCONS SMLIST) (CONS SMLIST L))
(LIST '(MEXPT SIMP) (MEVAL (LIST 'MFACTORIAL N)) -1))
)
)
)
)
(ADD2LNC '$LC_L $RULES)
(ADD2LNC '$LC_U $RULES)
(DECLARE-TOP (SPECIAL E EMPTY $FLIPFLAG))
(SETQ $FLIPFLAG NIL EMPTY '((MLIST SIMP) ((MLIST SIMP)) ((MLIST SIMP))))
(DEFUN NONUMBER (L)
(COND
((NUMBERP (CAR L)) (NONUMBER (CDR L)))
((EQ L NIL) ())
(T (CONS (CAR L) (NONUMBER (CDR L))))
)
)
(DEFUN REMOVEINDEX (E L)
(COND ((NULL L) NIL)
((ATOM E)
(COND ((EQ E (CAR L)) (CDR L))
(T (CONS (CAR L) (REMOVEINDEX E (CDR L))))
))
(T (REMOVEINDEX (CDR E) (REMOVEINDEX (CAR E) L)))
)
)
(DEFUN INDICES (E)
(PROG (TOP BOTTOM X Y P Q R)
(SETQ TOP NIL BOTTOM NIL)
(COND ((RPOBJ E) (SETQ TOP (NONUMBER (CDADDR E)) BOTTOM (NONUMBER (APPEND (CDADR E) (CDDDR E)))))
((ATOM E))
((MEMQ (CAAR E) '(MTIMES MNCTIMES MNCEXPT))
(DOLIST (V (CDR E))
(SETQ X (INDICES V) BOTTOM (APPEND BOTTOM (CADR X)) TOP (APPEND TOP (CAR X)))
)
)
((MEMQ (CAAR E) '(MPLUS MEQUAL))
(SETQ TOP (INDICES (CADR E)) BOTTOM (CADR TOP) TOP (CAR TOP))
(SETQ P (INTERSECT TOP BOTTOM) Q (REMOVEINDEX P BOTTOM) P (REMOVEINDEX P TOP))
(DOLIST (V (CDDR E))
(SETQ X (INDICES V) Y (CADR X) X (CAR X))
(SETQ R (INTERSECT X Y) X (REMOVEINDEX R X) Y (REMOVEINDEX R Y))
(WHEN (NOT (AND (SAMELISTS X P) (SAMELISTS Y Q))) (MERROR "Improper indices in ~M" V))
(SETQ TOP (UNION TOP R) BOTTOM (UNION BOTTOM R))
)
)
((MEMQ (CAAR E) '($SUM %SUM))
(SETQ TOP (LIST (CADDR E)) BOTTOM (LIST (CADDR E)))
)
((MEMQ (CAAR E) '(%DERIVATIVE $DIFF))
(DO ((I 1 (1+ I))) ((> I (COND ((CADDDR E) (CADDDR E)) (T 1))))
(SETQ BOTTOM (CONS (CADDR E) BOTTOM)))
)
;; (T (MERROR "Improper argument to INDICES: ~M" E))
)
(RETURN (LIST TOP BOTTOM))
)
)
(DEFMFUN $INDICES (E)
(PROG (TOP BOTTOM X)
(SETQ TOP (INDICES E) BOTTOM (CADR TOP) TOP (CAR TOP) X (INTERSECT TOP BOTTOM))
(SETQ TOP (REMOVEINDEX X TOP) BOTTOM (REMOVEINDEX X BOTTOM))
(RETURN (CONS SMLIST (LIST (CONS SMLIST (APPEND TOP BOTTOM)) (CONS SMLIST X))))
)
)
(DEFUN SAMELISTS (A B) ;"True" if A and B have the same distinct elements
(AND (= (LENGTH A) (LENGTH B))
(DO ((L
A
(CDR L)))
(NIL)
(COND ((NULL L) (RETURN T))
((MEMQ (CAR L) B))
(T (RETURN NIL))))))
(DEFMFUN $FLUSH n ;Replaces the given (as arguments to FLUSH) indexed
(prog (l) ;objects by zero if they have no derivative indices.
(cond ((< n 2) (merror "FLUSH takes at least 2 arguments"))
((not
(sloop for v in (setq l (listify (f- 1 n)))
always (symbolp v)))
; (apply 'and (mapcar 'symbolp
; (setq l (listify (f- 1 n))) ))
(merror "All arguments but the first must be names of
indexed objects")) (t (return (flush (arg 1) l t))))))
(DEFMFUN $FLUSHD n ;Replaces the given (as arguments to FLUSHD) indexed
(prog (l) ;objects by zero if they have any derivative indices.
(cond ((< n 2) (merror "FLUSH takes at least 2 arguments"))
((not
(sloop for v in (setq l (listify (f- 1 n)))
always (symbolp v))
; (apply 'and (mapcar 'symbolp
; (setq l (listify (f- 1 n)))))
)
(merror "All arguments but the first must be names of
indexed objects")) (t (return (flush (arg 1) l nil))))))
(defun FLUSH (e l flag)
(cond ((atom e) e)
((rpobj e)
(cond ((not (memq (caar e) l)) e)
((not (null (cdddr e)))
(cond (flag e)
(t 0)))
(t (cond (flag 0)
(t e)))))
(t (subst0 (cons (ncons (caar e))
(mapcar (function (lambda (q) (flush q l flag)))
(cdr e))) e))))
(DEFMFUN $FLUSHND (e name n) ;Replaces by zero all indexed objects
(cond ((atom e) e) ;that have n or more derivative indices
((rpobj e)
(cond ((and (equal (caar e) name)
(> (length (cdddr e)) (1- n)))
0)
(t e)))
(t (subst0 (cons (ncons (caar e))
(mapcar (function
(lambda (q) ($flushnd q name n)))
(cdr e))) e))))
(DECLARE-TOP (FIXNUM INDEX N) (SPECIAL INDEX N DUMX))
;(DEFMFUN $RENAME NARGS ((LAMBDA (INDEX) (RENAME (ARG 1)))
; (COND ((= NARGS 1) 1) (T (ARG 2))))) ;Sets INDEX to 1 or 2nd argument of
; ;$RENAME
(DEFMFUN $RENAME NARGS
(cond ((= NARGS 1) (setq INDEX 1)) (t (setq INDEX (arg 2)))) (rename (arg 1)))
(DEFUN RENAME (E) ;Renames dummy indices consistently
(COND
((ATOM E) E)
((OR (RPOBJ E) (EQ (CAAR E) 'MTIMES));If an indexed object or a product
((LAMBDA (L)
(SIMPTIMES (REORDER (COND (L (SUBLIS (itensor-CLEANUP L (SETQ N INDEX)) E))(T E))) 1 T))
(CDADDR ($INDICES E)) ;Gets list of dummy indices
))
(T ;Otherwise map $RENAME on each of the subparts e.g. a sum
(MYSUBST0 (SIMPLIFYA (CONS (NCONS (CAAR E))
(MAPCAR 'RENAME (CDR E)))
T)
E))
))
(DEFUN REORDER (E) ;Reorders contravariant, covariant, derivative indices
(MYSUBST0 ;Example: F([A,B],[C,D],E,F)
(CONS
'(MTIMES)
(MAPCAR
#'(LAMBDA (X)
(COND ((RPOBJ X)
(NCONC (LIST (CAR X) ;($F SIMP)
(CONS SMLIST
(COND ($ALLSYM (itensor-SORT (COPY (CDADR X))))
(T (CDADR X)))) ;($A $B)
(CONS SMLIST
(COND ($ALLSYM
(itensor-SORT (COPY (CDADDR X))))
(T (CDADDR X))))) ;($C $D)
(itensor-SORT (COPY (CDDDR X))))) ;($E $F)
(T X)))
(COND ((EQ (CAAR E) 'MTIMES) (CDR E))
(T (NCONS E)))))
E))
(DEFUN itensor-CLEANUP (A N)((LAMBDA (DUMX)(CLEANUP1 A)) NIL)) ;Sets DUMX to NIL
(DEFUN CLEANUP1 (A)
(AND A (SETQ DUMX (IMPLODE (NCONC (EXPLODEN $DUMMYX) ;Keep proper order of
(EXPLODEN N))) N (1+ N)) ;indices
(COND ((EQ DUMX (CAR A)) (CLEANUP1 (CDR A)))
(T (CONS (CONS (CAR A) DUMX) (CLEANUP1 (CDR A)))))))
;Make list of dotted pairs indicating substitutions i.e. ((A . #1) (B . #2))
(DECLARE-TOP (NOTYPE N INDEX)(UNSPECIAL N DUMX INDEX))
(DEFUN itensor-SORT (L) (COND ((CDR L) (SORT L 'LESS)) (T L)))
;Sort into ascending order
(DEFMFUN $REMCOMPS (TENSOR)
(ZL-REMPROP TENSOR 'EXPR) (ZL-REMPROP TENSOR 'CARRAYS)
(ZL-REMPROP TENSOR 'TEXPRS) (ZL-REMPROP TENSOR 'INDEXED)
(ZL-REMPROP TENSOR 'TSUBR) '$DONE)
(DEFMFUN $INDEXED (TENSOR)
(LET (FP NEW)
(AND (ZL-GET TENSOR 'EXPR)
(merror "~M has expr" tensor))
(ARGS TENSOR NIL)
(AND (SETQ FP (ZL-GET TENSOR 'SUBR))
(PROGN (SETQ NEW (GENSYM))(PUTPROP NEW FP 'SUBR)
(ZL-REMPROP TENSOR 'SUBR)(PUTPROP TENSOR NEW 'TSUBR)))
(PUTPROP TENSOR T 'INDEXED)
(PUTPROP TENSOR (SUBST TENSOR 'G '(LAMBDA N (TENSOREVAL (QUOTE G)(LISTIFY N)))) 'EXPR)
(eval (subst tensor 'g (quote (defmfun g n (tensoreval 'g (listify n))))))
'$DONE))
(DEFUN ALLFIXED (L)
(AND L (FIXP (CAR L)) (OR (NULL (CDR L)) (ALLFIXED (CDR L)))))
;;(DEFUN TENSOREVAL (TENSOR INDXS)
;; ((LAMBDA (DER CON)
;; (AND (CDR INDXS) (SETQ CON (CDADR INDXS) DER (CDDR INDXS)))
;; (SETQ TENSOR (SELECT TENSOR (CDAR INDXS) CON))
;; (COND (DER (APPLY '$DIFF (CONS TENSOR (PUTINONES DER))))
;; (T TENSOR))) NIL NIL))
(DEFUN TENSOREVAL (TENSOR INDXS)
((LAMBDA (DER CON)
(AND (CDR INDXS) (SETQ CON (CDADR INDXS) DER (CDDR INDXS)))
(SETQ TENSOR (SELECT TENSOR (CDAR INDXS) CON DER))
) NIL NIL))
;;(DEFMFUN $COMPONENTS (TENSOR COMP)
;; ((LAMBDA (LEN1 LEN2 NAME PROP)
;; (COND ((OR (NOT (RPOBJ TENSOR))(CDDDR TENSOR))
;; (merror "Improper 1st arg to COMPONENTS: ~M"
;; TENSOR
;; )))
;; (SETQ LEN1 (LENGTH (CDADR TENSOR)) LEN2 (LENGTH (CDADDR TENSOR)))
;; (AND (NOT (ATOM COMP))(EQ (CAAR COMP) '$MATRIX)
;; (COND ((= (f+ LEN1 LEN2) 2)(SETQ NAME (GENSYM))
;; (SET NAME COMP)(SETQ COMP NAME))
;; (T
;; (merror "Needs two indices for COMPONENTS from matrix:~%~M"
;; TENSOR))))
;; (COND ((AND (EQ (ML-TYPEP COMP) 'SYMBOL) (> (f+ LEN1 LEN2) 0))
;; (SETQ PROP 'CARRAYS))
;; ((SAMELISTS (SETQ NAME (APPEND (CDADR TENSOR) (CDADDR TENSOR)))
;; (CDADR ($INDICES COMP)))
;; (SETQ PROP 'TEXPRS COMP (CONS COMP NAME)))
;; (T (merror "Args to COMPONENTS do not have the same free indices")))
;; (SETQ TENSOR (CAAR TENSOR) LEN1 (CONS LEN1 LEN2))
;; (COND ((AND (SETQ NAME (ZL-GET TENSOR PROP))
;; (SETQ LEN2 (ZL-ASSOC LEN1 NAME))) (RPLACD LEN2 COMP))
;; (T (PUTPROP TENSOR (CONS (CONS LEN1 COMP) NAME) PROP)))
;; (OR (ZL-GET TENSOR 'INDEXED) ($INDEXED TENSOR))
;; '$DONE) NIL NIL NIL NIL))
(DEFMFUN $COMPONENTS (TENSOR COMP)
((LAMBDA (LEN1 LEN2 LEN3 NAME PROP)
(COND ((NOT (RPOBJ TENSOR))
(merror "Improper 1st arg to COMPONENTS: ~M"
TENSOR
)))
(SETQ LEN1 (LENGTH (CDADR TENSOR)) LEN2 (LENGTH (CDADDR TENSOR)) LEN3 (LENGTH (CDDDR TENSOR)))
(AND (NOT (ATOM COMP))(EQ (CAAR COMP) '$MATRIX)
(COND ((= (f+ (f+ LEN1 LEN2) LEN3) 2)(SETQ NAME (GENSYM))
(SET NAME COMP)(SETQ COMP NAME))
(T
(merror "Needs two indices for COMPONENTS from matrix:~%~M"
TENSOR))))
(COND ((AND (EQ (ML-TYPEP COMP) 'SYMBOL) (> (f+ (f+ LEN1 LEN2) LEN3) 0))
(SETQ PROP 'CARRAYS))
((SAMELISTS (SETQ NAME (APPEND (CDADR TENSOR) (CDADDR TENSOR) (CDDDR TENSOR)))
(CDADR ($INDICES COMP)))
(SETQ PROP 'TEXPRS COMP (CONS COMP NAME)))
(T (merror "Args to COMPONENTS do not have the same free indices")))
(SETQ TENSOR (CAAR TENSOR) LEN1 (LIST LEN1 LEN2 LEN3))
(COND ((AND (SETQ NAME (ZL-GET TENSOR PROP))
(SETQ LEN2 (ZL-ASSOC LEN1 NAME))) (RPLACD LEN2 COMP))
(T (PUTPROP TENSOR (CONS (CONS LEN1 COMP) NAME) PROP)))
(OR (ZL-GET TENSOR 'INDEXED) ($INDEXED TENSOR))
'$DONE) NIL NIL NIL NIL NIL))
;;(DEFUN SELECT (TENSOR L1 L2)
;; ((LAMBDA (PROP SUBS INDEX)
;; (COND ((AND (ALLFIXED SUBS) (SETQ PROP (ZL-GET TENSOR 'CARRAYS))
;; (SETQ PROP (ZL-ASSOC INDEX PROP)))
;; (COND ((ALIKE1 (SETQ PROP (CONS (LIST (CDR PROP) 'ARRAY) SUBS))
;; (SETQ SUBS (MEVAL PROP))) 0)
;; (T SUBS)))
;; ((SETQ PROP (ZL-ASSOC INDEX (ZL-GET TENSOR 'TEXPRS)))
;; (SUBLIS (MAPCAR (FUNCTION CONS)(CDDR PROP) SUBS) (CADR PROP)))
;; ((SETQ PROP (ZL-GET TENSOR 'TSUBR))
;; (APPLY PROP (LIST (CONS SMLIST L1)(CONS SMLIST L2))))
;; (T (LIST (LIST TENSOR 'SIMP)(CONS SMLIST L1)(CONS SMLIST L2)))))
;; NIL (APPEND L1 L2)(CONS (LENGTH L1)(LENGTH L2))))
;;vtt: inconstant was an attempt to remove constant indices, but it really doesn't work out.
;;(DEFUN INCONSTANT (L)
;; (COND
;; ((EQ L NIL) NIL)
;; (($CONSTANTP (CAR L)) (AND (NOT (EQ NIL (CDR L))) (INCONSTANT (CDR L))))
;; (T (CONS (CAR L) (AND (NOT (EQ NIL (CDR L))) (INCONSTANT (CDR L)))))
;; )
;;)
(DEFUN SELECT (TENSOR L1 L2 L3)
((LAMBDA (PROP SUBS INDEX)
(COND ((AND (ALLFIXED SUBS) (SETQ PROP (ZL-GET TENSOR 'CARRAYS))
(SETQ PROP (ZL-ASSOC INDEX PROP)))
(COND ((ALIKE1 (SETQ PROP (CONS (LIST (CDR PROP) 'ARRAY) SUBS))
(SETQ SUBS (MEVAL PROP))) 0)
(T SUBS)))
((SETQ PROP (ZL-ASSOC INDEX (ZL-GET TENSOR 'TEXPRS)))
;;;VTT (SUBLIS (MAPCAR (FUNCTION CONS)(CDDR PROP) SUBS) (CADR PROP)))
;;; (SUBLIS (MAPCAR (FUNCTION CONS)(CDDR PROP) SUBS) ($RENAME (CADR PROP) (COND ((BOUNDP 'N) N) (T 1)))))
(SUBLIS (MAPCAR (FUNCTION CONS)(CDDR PROP) SUBS) (CAR (CONS ($RENAME (CADR PROP) (1+ $COUNTER)) (SETQ $COUNTER (1- (COND ((BOUNDP 'N) N) (T 1))))))))
((SETQ PROP (ZL-GET TENSOR 'TSUBR))
;; (APPLY PROP (LIST (CONS SMLIST (INCONSTANT L1))(CONS SMLIST (INCONSTANT L2))(CONS SMLIST L3))))
;; ((NOT (EQ L3 NIL)) (APPLY '$DIFF (SELECT TENSOR (INCONSTANT L1) (INCONSTANT L2) (CDR L3)) (LIST (CAR L3))))
;; (T (APPEND (LIST (LIST TENSOR 'SIMP)(CONS SMLIST (INCONSTANT L1))(CONS SMLIST (INCONSTANT L2))) L3))))
;; NIL (APPEND (INCONSTANT L1) (INCONSTANT L2) L3)(LIST (LENGTH (INCONSTANT L1))(LENGTH (INCONSTANT L2))(LENGTH L3))))
(APPLY PROP (LIST (CONS SMLIST L1)(CONS SMLIST L2)(CONS SMLIST L3))))
((NOT (EQ L3 NIL)) (APPLY '$DIFF (SELECT TENSOR L1 L2 (CDR L3)) (LIST (CAR L3))))
(T (APPEND (LIST (LIST TENSOR 'SIMP)(CONS SMLIST L1)(CONS SMLIST L2)) L3))))
NIL (APPEND L1 L2 L3)(LIST (LENGTH L1)(LENGTH L2)(LENGTH L3))))
(DEFMFUN $ENTERTENSOR nargs
(prog (fun contr cov deriv)
(cond ((> nargs 1)
(merror "ENTERTENSOR takes 0 or 1 arguments only"))
((= nargs 0)
(mtell "Enter tensor name: ")
(setq fun (meval (retrieve nil nil))))
((setq fun (arg 1))))
(mtell "Enter a list of the covariant indices: ")
(setq cov (checkindex (meval (retrieve nil nil)) fun))
(cond ((atom cov) (setq cov (cons smlist (ncons cov)))))
(mtell "Enter a list of the contravariant indices: ")
(setq contr (checkindex (meval (retrieve nil nil)) fun))
(cond ((atom contr) (setq contr (cons smlist (ncons contr)))))
(mtell "Enter a list of the derivative indices: ")
(setq deriv (checkindex (meval (retrieve nil nil)) fun))
(setq deriv (cond ((atom deriv) (ncons deriv))
(t (cdr deriv))))
(cond ((memberl (cdr cov) deriv)
(mtell "~%Warning - there are indices that are both covariant ~
and derivative%")))
(return ($SHOW (nconc (list (list fun 'SIMP) cov contr)
deriv)))))
(defun CHECKINDEX (e f)
(cond ((and (atom e) (not (eq e f))) e)
((and (eq (caar e) 'MLIST)
(sloop for v in (cdr e) always (atom v))
; (apply 'and (mapcar 'atom (cdr e)))
(not (memq f e))) e)
(t (merror "Indices must be atoms different from the tensor name"))))
(defun MEMBERL (a b)
(do ((l a (cdr l))
(carl))
((null l) nil)
(setq carl (car l))
(cond ((and (eq (ml-typep carl) 'SYMBOL)
(zl-member carl b)) (return t)))))
(defun CONSMLIST (l) (cons smlist l)) ;Converts from Lisp list to Macsyma list
(DEFMFUN $INDICES2 (e)
(cond ((atom e) empty)
((not (or (memq (caar e) '(MTIMES MNCTIMES)) (rpobj e)))
($indices e))
(t ((lambda (indices)
(do ((ind indices) (free) (dummy) (index))
((null ind)
(consmlist (list (consmlist (nreverse free))
(consmlist (nreverse dummy)))))
(setq index (car ind))
(cond ((zl-member index dummy)
(merror "~M has improper indices"
(ishow e)))
((zl-member index (cdr ind))
(setq dummy (cons index dummy)
ind (zl-delete index (copy (cdr ind))
1)))
(t (setq free (cons index free)
ind (cdr ind))))))
(do ((e (cond ((memq (caar e) '(MTIMES MNCTIMES)) (cdr e))
(t (ncons e))) (cdr e))
(a) (l))
((null e) l)
(setq a (car e))
(and (rpobj a) (setq l (append l (cdadr a) (cdaddr a)
(cdddr a)))))))))
;$INDICES2 is similar to $INDICES except that here dummy indices are picked off
;as they first occur in going from left to right through the product or indexed
;object. Also, $INDICES2 works only on the top level of a product and will
;miss indices for products of sums (which is used to advantage by $GENERATE).
(DEFMFUN $CHANGENAME (a b e) ;Change the name of the indexed object A to B in E
(prog (old indspec ncov ncontr) ;INDSPEC is INDex SPECification flag
(cond ((not (or (and (eq (ml-typep a) 'SYMBOL) (setq old a))
(and ($listp a) (equal (length (cdr a)) 3)
(eq (ml-typep (setq old (cadr a))) 'SYMBOL)
(eq (ml-typep (setq ncov (caddr a))) 'FIXNUM)
(eq (ml-typep (setq ncontr (cadddr a))) 'FIXNUM)
(setq indspec t))))
(merror "Improper first argument to CHANGENAME: ~M" a))
((not (eq (ml-typep b) 'SYMBOL))
(merror "Second argument to CHANGENAME must be a symbol"))
(t (return (changename old indspec ncov ncontr b e))))))
(defun CHANGENAME (a indspec ncov ncontr b e)
(cond ((or (atom e) (eq (caar e) 'RAT)) e)
((rpobj e)
(cond ((and (eq (caar e) a)
(cond (indspec (and (equal (length (cdadr e)) ncov)
(equal (length (cdaddr e))
ncontr)))
(t t)))
(cons (cons b (cdar e)) (cdr e)))
(t e)))
(t (mysubst0 (cons (car e)
(mapcar (function
(lambda (q)
(changename a indspec ncov
ncontr b q)))
(cdr e))) e))))
(DEFMFUN $COORD n
(do ((l (listify n) (cdr l)) (a))
((null l) '$DONE)
(setq a (car l))
(cond ((not (eq (ml-typep a) 'SYMBOL))
(merror "~M is not a valid name." a))
(t (add2lnc a $COORD)))))
(DEFMFUN $REMCOORD n
(cond ((and (equal n 1) (eq (arg 1) '$ALL))
(setq $COORD '((MLIST))) '$DONE)
(t (do ((l (listify n) (cdr l)))
((null l) '$DONE)
(delq (car l) $COORD)))))
;; Additions on 5/19/2004 -- VTT
(DEFUN MEMBERLIST (E L)
(COND ((NULL L) NIL)
((EQUAL E (CAR L)) T)
(T (MEMBERLIST E (CDR L)))
)
)
(DEFUN UNIONLIST (L1 L2)
(COND ((NULL L1) L2)
((MEMBERLIST (CAR L1) L2) (UNIONLIST (CDR L1) L2))
(T (CONS (CAR L1) (UNIONLIST (CDR L1) L2)))
)
)
(DEFMFUN $LISTOFTENS (E) (itensor-sort (CONS SMLIST (LISTOFTENS E))))
(DEFUN LISTOFTENS (E)
(COND
((ATOM E) NIL)
((RPOBJ E) (LIST E))
(T (PROG (L) (SETQ L NIL)
(MAPCAR (LAMBDA (X) (SETQ L (UNIONLIST L (LISTOFTENS X)))) (CDR E))
(RETURN L)
)
)
)
)
(DEFUN NUMLIST (&optional (n '1)) (COND ((>= n $DIM) (LIST n)) (T (CONS n (NUMLIST (1+ n))))))
;;SHOWCOMPS(tensor):=BLOCK([i1,i2,ind:INDICES(tensor)[1]],
;; IF LENGTH(ind)=0 THEN SHOW(EV(tensor))
;; ELSE IF LENGTH(ind)=1 THEN SHOW(MAKELIST(EV(tensor,ind[1]=i1),i1,1,DIM))
;; ELSE IF LENGTH(ind)=2 THEN SHOW(tensor=APPLY('MATRIX,MAKELIST(MAKELIST(EV(tensor,[ind[1]=i1,ind[2]=i2]),i1,1,DIM),i2,1,DIM)))
;; ELSE FOR i1 THRU DIM DO (SHOWCOMPS(SUBST(i1,LAST(ind),tensor)),IF LENGTH(ind)=3 AND i1<DIM THEN LINENUM:LINENUM+1)
;;);
(DEFMFUN $SHOWCOMPS (E)
(PROG (IND)
(SETQ IND (CDADR ($INDICES E)))
(COND ((> 1 (LENGTH IND)) ($SHOW (MEVAL (LIST '($EV) E))))
((> 2 (LENGTH IND)) ($SHOW (CONS SMLIST (MAPCAR (LAMBDA (I) (MEVAL (LIST '($EV) E (LIST '(MEQUAL) (CAR IND) I)))) (NUMLIST)))))
((> 3 (LENGTH IND)) ($SHOW (LIST '(MEQUAL) E (CONS '($MATRIX SIMP) (MAPCAR (LAMBDA (J) (CONS SMLIST (MAPCAR (LAMBDA (I) (MEVAL (LIST '($EV) E (LIST '(MEQUAL) (CAR IND) I) (LIST '(MEQUAL) (CADR IND) J)))) (NUMLIST)))) (NUMLIST))))))
(T (MAPCAR (LAMBDA (I) ($SHOWCOMPS ($SUBSTITUTE I (CAR (LAST IND)) E)) (AND (> 4 (LENGTH IND)) (< I $DIM) (SETQ $LINENUM (1+ $LINENUM)))) (NUMLIST)))
)
)
)
|