1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
"""
Tests for array_handler.py.
"""
# Author: Prabhu Ramachandran <prabhu_r@users.sf.net>
# Copyright (c) 2005-2020, Enthought, Inc.
# License: BSD Style.
import unittest
import vtk
import numpy
from tvtk import array_handler
from tvtk import tvtk_base
# FIXME: test_tvtk_base.py is in the local directory so just doing
# from test_tvtk_base import Prop
# should be enough, however nose 0.9.3 will not find it, unless you give
# it the full path. It nose 0.10.3 works fine in this respect.
from tvtk.tests.test_tvtk_base import Prop
def mysum(arr):
val = arr
while type(val) == numpy.ndarray:
val = numpy.sum(val)
return val
class TestArrayHandler(unittest.TestCase):
def _check_arrays(self, arr, vtk_arr):
self.assertEqual(vtk_arr.GetNumberOfTuples(), len(arr))
msg = f"\n{vtk_arr}"
if len(arr.shape) == 2:
dim1 = arr.shape[1]
self.assertEqual(vtk_arr.GetNumberOfComponents(), dim1)
for i in range(len(arr)):
if dim1 in [1,2,3,4,9]:
res = getattr(vtk_arr, 'GetTuple%s'%dim1)(i)
self.assertEqual(numpy.sum(res - arr[i]), 0)
else:
res = [vtk_arr.GetComponent(i, j) for j in range(dim1)]
self.assertEqual(numpy.sum(res - arr[i]), 0)
else:
if arr.dtype.char == 'c':
for i in range(len(arr)):
self.assertEqual(chr(int(vtk_arr.GetTuple1(i))), arr[i])
else:
for i in range(len(arr)):
self.assertEqual(vtk_arr.GetTuple1(i), arr[i], msg=msg)
def test_array2vtk(self):
"""Test Numeric array to VTK array conversion and vice-versa."""
# Put all the test arrays here.
t_z = []
# Test the different types of arrays.
t_z.append(numpy.array([-128, 0, 127], numpy.int8))
# FIXME: character arrays are a problem since there is no
# unique mapping to a VTK data type and back.
#t_z.append(numpy.array([-128, 0, 127], numpy.character))
t_z.append(numpy.array([-32768, 0, 32767], numpy.int16))
t_z.append(numpy.array([-2147483648, 0, 2147483647], numpy.int32))
t_z.append(numpy.array([
-9223372036854775808, 0, 9223372036854775807], numpy.int64))
assert t_z[-1][0] == -9223372036854775808
t_z.append(numpy.array([0, 255], numpy.uint8))
t_z.append(numpy.array([0, 65535], numpy.uint16))
t_z.append(numpy.array([0, 4294967295], numpy.uint32))
t_z.append(numpy.array([-1.0e38, 0, 1.0e38], 'f'))
t_z.append(numpy.array([-1.0e299, 0, 1.0e299], 'd'))
# Check multi-component arrays.
t_z.append(numpy.array([[1], [2], [300]], 'd'))
t_z.append(numpy.array([[1, 20], [300, 4000]], 'd'))
t_z.append(numpy.array([[1, 2, 3], [4, 5, 6]], 'f'))
t_z.append(numpy.array([[1, 2, 3],[4, 5, 6]], 'd'))
t_z.append(numpy.array([[1, 2, 3, 400],[4, 5, 6, 700]],
'd'))
t_z.append(numpy.array([list(range(9)),list(range(10,19))], 'f'))
# Test if a Python list also works.
t_z.append(numpy.array([[1., 2., 3., 400.],[4, 5, 6, 700]],
'd'))
# Test if arrays with number of components not in [1,2,3,4,9] work.
t_z.append(numpy.array([[1, 2, 3, 400, 5000],
[4, 5, 6, 700, 8000]], 'd'))
t_z.append(numpy.array([list(range(10)), list(range(10,20))], 'd'))
for z in t_z:
vtk_arr = array_handler.array2vtk(z)
# Test for memory leaks.
self.assertEqual(vtk_arr.GetReferenceCount(),
array_handler.BASE_REFERENCE_COUNT)
self._check_arrays(z, vtk_arr)
z1 = array_handler.vtk2array(vtk_arr)
if len(z.shape) == 1:
self.assertEqual(len(z1.shape), 1)
if z.dtype.char != 'c':
self.assertEqual(sum(numpy.ravel(z) - numpy.ravel(z1)), 0)
else:
self.assertEqual(z, z1.astype('c'))
# Check if type conversion works correctly.
z = numpy.array([-128, 0, 127], numpy.int8)
vtk_arr = vtk.vtkDoubleArray()
ident = id(vtk_arr)
vtk_arr = array_handler.array2vtk(z, vtk_arr)
# Make sure this is the same array!
self.assertEqual(ident, id(vtk_arr))
self._check_arrays(z, vtk_arr)
# Check the vtkBitArray.
vtk_arr = vtk.vtkBitArray()
vtk_arr.InsertNextValue(0)
vtk_arr.InsertNextValue(1)
vtk_arr.InsertNextValue(0)
vtk_arr.InsertNextValue(1)
arr = array_handler.vtk2array(vtk_arr)
self.assertEqual(numpy.sum(arr - [0,1,0,1]), 0)
vtk_arr = array_handler.array2vtk(arr, vtk_arr)
self.assertEqual(vtk_arr.GetValue(0), 0)
self.assertEqual(vtk_arr.GetValue(1), 1)
self.assertEqual(vtk_arr.GetValue(2), 0)
self.assertEqual(vtk_arr.GetValue(3), 1)
# ----------------------------------------
# Test if the array is copied or not.
a = numpy.array([[1, 2, 3],[4, 5, 6]], 'd')
vtk_arr = array_handler.array2vtk(a)
# Change the numpy array and see if the changes are
# reflected in the VTK array.
a[0] = [10.0, 20.0, 30.0]
self.assertEqual(vtk_arr.GetTuple3(0), (10., 20., 30.))
# Make sure the cache is doing its job.
key = vtk_arr.__this__
z = array_handler._array_cache.get(vtk_arr)
self.assertEqual(numpy.sum(z - numpy.ravel(a)), 0.0)
l1 = len(array_handler._array_cache)
# del the Numeric array and see if this still works.
del a
self.assertEqual(vtk_arr.GetTuple3(0), (10., 20., 30.))
# Check the cache -- just making sure.
self.assertEqual(len(array_handler._array_cache), l1)
# Delete the VTK array and see if the cache is cleared.
del vtk_arr
self.assertEqual(len(array_handler._array_cache), l1-1)
self.assertEqual(key in array_handler._array_cache._cache, False)
# Make sure bit arrays are copied.
vtk_arr = vtk.vtkBitArray()
a = numpy.array([0,1,0,1], numpy.int32)
vtk_arr = array_handler.array2vtk(a, vtk_arr)
del a
self.assertEqual(vtk_arr.GetValue(0), 0)
self.assertEqual(vtk_arr.GetValue(1), 1)
self.assertEqual(vtk_arr.GetValue(2), 0)
self.assertEqual(vtk_arr.GetValue(3), 1)
# Make sure the code at least runs for all
# numerical dtypes in numpy
# except for half, longdouble and complexfloating
int_types = ['byte', 'short', 'int', 'intc', 'int_', 'long', 'longlong']
uint_types = ['ubyte', 'ushort', 'uintc', 'uint', 'ulong',
'ulonglong']
float_types = ['single', 'double']
for dtype in int_types + uint_types + float_types:
array_handler.array2vtk(numpy.zeros((1,),
dtype=numpy.dtype(dtype)))
def test_arr2cell_array(self):
"""Test Numeric array to vtkCellArray conversion."""
# Test list of lists.
a = [[0], [1, 2], [3, 4, 5], [6, 7, 8, 9]]
cells = array_handler.array2vtkCellArray(a)
z = numpy.array([1, 0, 2, 1, 2, 3, 3, 4, 5, 4, 6, 7, 8, 9])
arr = array_handler.vtk2array(cells.GetData())
self.assertEqual(numpy.sum(arr - z), 0)
self.assertEqual(len(arr.shape), 1)
self.assertEqual(len(arr), 14)
# Test if optional argument stuff also works.
cells = vtk.vtkCellArray()
ident = id(cells)
cells = array_handler.array2vtkCellArray(a, cells)
self.assertEqual(id(cells), ident)
arr = array_handler.vtk2array(cells.GetData())
self.assertEqual(numpy.sum(arr - z), 0)
self.assertEqual(cells.GetNumberOfCells(), 4)
# Make sure this resets the cell array and does not add to the
# existing list!
cells = array_handler.array2vtkCellArray(a, cells)
self.assertEqual(cells.GetNumberOfCells(), 4)
# Test Numeric array handling.
N = 3
a = numpy.zeros((N,3), int)
a[:,1] = 1
a[:,2] = 2
cells = array_handler.array2vtkCellArray(a)
arr = array_handler.vtk2array(cells.GetData())
expect = numpy.array([3, 0, 1, 2]*3, int)
self.assertTrue(numpy.all(numpy.equal(arr, expect)))
self.assertEqual(cells.GetNumberOfCells(), N)
# Test if a list of Numeric arrays of different cell lengths works.
l_a = [a[:,:1], a, a[:2,:2]]
cells = array_handler.array2vtkCellArray(l_a)
arr = array_handler.vtk2array(cells.GetData())
expect = numpy.array([1, 0]*3 + [3, 0, 1, 2]*3 + [2, 0,1]*2, int)
self.assertTrue(numpy.all(numpy.equal(arr, expect)))
self.assertEqual(cells.GetNumberOfCells(), N*2 + 2)
# This should not take a long while. This merely tests if a
# million cells can be created rapidly.
N = int(1e6)
a = numpy.zeros((N,3), int)
a[:,1] = 1
a[:,2] = 2
cells = array_handler.array2vtkCellArray(a)
self.assertEqual(cells.GetNumberOfCells(), N)
def test_arr2vtkPoints(self):
"""Test Numeric array to vtkPoints conversion."""
a = [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]
p = array_handler.array2vtkPoints(a)
self.assertEqual(p.GetPoint(0), (0.0, 0.0, 0.0))
self.assertEqual(p.GetPoint(1), (1.0, 1.0, 1.0))
p = vtk.vtkPoints()
ident = id(p)
p = array_handler.array2vtkPoints(numpy.array(a), p)
self.assertEqual(p.GetPoint(0), (0.0, 0.0, 0.0))
self.assertEqual(p.GetPoint(1), (1.0, 1.0, 1.0))
self.assertEqual(id(p), ident)
self.assertRaises(AssertionError, array_handler.array2vtkPoints,
[0.0, 1.0])
self.assertRaises(AssertionError, array_handler.array2vtkPoints,
[0.0, 1.0, 1.0])
def test_arr2vtkIdList(self):
"""Test array to vtkIdList conversion."""
a = [1, 2, 3, 4, 5]
p = array_handler.array2vtkIdList(a)
for i, j in enumerate(a):
self.assertEqual(p.GetId(i), j)
p = vtk.vtkIdList()
ident = id(p)
p = array_handler.array2vtkIdList(numpy.array(a), p)
for i, j in enumerate(a):
self.assertEqual(p.GetId(i), j)
self.assertEqual(id(p), ident)
self.assertRaises(AssertionError, array_handler.array2vtkIdList,
[[1,2,3]])
def test_get_correct_sig(self):
"""Test multiple signature cases that have array arguments."""
obj = tvtk_base.TVTKBase(vtk.vtkIdTypeArray)
sigs = [ None,
[['vtkDataArray']],
[['int', 'vtkIdList']],
[['int', 'vtkPoints'], ['int', 'int']],
[['int', 'vtkPoints'], ['int']],
[['int'], ['int', 'vtkPoints']],
[['int', 'vtkDataArray'], ['int', 'int']],
[['int', 'vtkDataArray'], ['int', 'int']],
[['vtkIdList', 'vtkCellArray'], ['int', 'vtkPoints'],
['int', 'vtkDataArray']],
[['vtkIdList', 'vtkCellArray'], ['int', 'vtkPoints'],
['int', 'vtkDataArray']],
[['vtkIdTypeArray', 'vtkCellArray'], ['int', 'vtkPoints'],
['int', 'vtkDataArray']],
[['vtkIdTypeArray', 'vtkCellArray'], ['int', 'vtkPoints'],
['int', 'vtkDataArray']],
[['vtkIdTypeArray', 'vtkCellArray'], ['int', 'vtkPoints'],
['int', ('float', 'float', 'float')]],
]
args = [ [1], # No sig info.
['foo'], # One sig.
[1], # One sig.
[1], # Error
[1], # Only one valid sig.
[1,[1,1,1]], # Only one valid sig.
[1, [1,1,1]], # Multiple valid sigs.
[1,1], # No arrays!
[1,1], # No match so returns None.
[1, [1,1,1]], # ambiguous, pick first match.
[numpy.array([1,1]), [1,1,1]], # Match!
[obj, [2,1,2,3]], # TVTK array object, match.
[[2,1,2,3], obj], # TVTK array object, match but has
# wrong argument. Should be caught
# by VTK.
]
res = [ None,
['vtkDataArray'],
['int', 'vtkIdList'],
TypeError,
['int'],
['int', 'vtkPoints'],
['int', 'vtkDataArray'],
None,
None,
['int', 'vtkPoints'],
['vtkIdTypeArray', 'vtkCellArray'],
['vtkIdTypeArray', 'vtkCellArray'],
['vtkIdTypeArray', 'vtkCellArray'],
]
for i in range(len(sigs)):
if res[i] is TypeError:
self.assertRaises(res[i], array_handler.get_correct_sig,
args[i], sigs[i])
else:
s = array_handler.get_correct_sig(args[i], sigs[i])
self.assertEqual(s, res[i])
def test_deref_array(self):
"""Test if dereferencing array args works correctly."""
sigs = [[['vtkDataArray']],
[['vtkFloatArray']],
[['vtkCellArray']],
[['vtkPoints']],
[['int', 'vtkIdList']],
[['int', ('float', 'float'), 'vtkDataArray']],
[['Prop', 'int', 'vtkDataArray']],
[['Points', ('float', 'float', 'float')]]
]
args = [[[1,2,3]],
[[0,0,0]],
[[[1,2,3],[4,5,6]]],
[[[0.,0.,0.], [1.,1.,1.]]],
[1, [1,2,3]],
[1, (0.0, 0.0), [1.0, 1.0, 1.0]],
[Prop(), 1, numpy.array([1.0, 1.0, 1.0])],
[[[1,2,3]], [1,2,3]]
]
r = array_handler.deref_array(args[0], sigs[0])
self.assertEqual(mysum(array_handler.vtk2array(r[0]) -args[0]), 0)
r = array_handler.deref_array(args[1], sigs[1])
self.assertEqual(mysum(array_handler.vtk2array(r[0]) - args[1]), 0)
r = array_handler.deref_array(args[2], sigs[2])
self.assertEqual(r[0].GetNumberOfCells(), 2)
r = array_handler.deref_array(args[3], sigs[3])
self.assertEqual(mysum(array_handler.vtk2array(r[0].GetData()) -
numpy.array(args[3], 'f')), 0)
r = array_handler.deref_array(args[4], sigs[4])
self.assertEqual(r[0], 1)
self.assertEqual(r[1].__class__.__name__, 'vtkIdList')
r = array_handler.deref_array(args[5], sigs[5])
self.assertEqual(r[0], 1)
self.assertEqual(r[1], (0.0, 0.0))
self.assertEqual(mysum(array_handler.vtk2array(r[2]) -args[5][2]), 0)
r = array_handler.deref_array(args[6], sigs[6])
self.assertEqual(r[0].IsA('vtkProperty'), True)
self.assertEqual(r[1], 1)
self.assertEqual(mysum(array_handler.vtk2array(r[2]) -args[6][2]), 0)
r = array_handler.deref_array(args[7], sigs[7])
def test_reference_to_array(self):
"""Does to_array return an existing array instead of a new copy."""
arr = numpy.arange(0.0, 10.0, 0.1)
arr = numpy.reshape(arr, (25, 4))
vtk_arr = array_handler.array2vtk(arr)
arr1 = array_handler.vtk2array(vtk_arr)
# Now make sure these are using the same memory.
arr[0][0] = 100.0
self.assertEqual(arr[0][0], arr1[0][0])
self.assertEqual(arr.shape, arr1.shape)
def test_array_cache(self):
"""Test the ArrayCache class."""
cache = array_handler.ArrayCache()
# Test if len works.
self.assertEqual(len(cache), 0)
arr = numpy.zeros(100, float)
varr = vtk.vtkFloatArray()
# test contains
self.assertEqual(varr not in cache, True)
cache.add(varr, arr)
self.assertEqual(len(cache), 1)
self.assertEqual(varr in cache, True)
# Test the get method.
self.assertEqual(cache.get(varr) is arr, True)
# Test if the cache is cleared when the array is deleted.
del varr
self.assertEqual(len(cache), 0)
def test_vtk2array_appended_array(self):
"""Test the vtk2array can tolerate appending a cached array."""
# array is cached upon array2vtk is called
arr = numpy.arange(8).reshape(2, 4)
vtk_arr = array_handler.array2vtk(arr)
arr1 = array_handler.vtk2array(vtk_arr)
# the vtk array is appended, shapes don't match cached array anymore
extra_row = (1, 2, 3, 4)
vtk_arr.InsertTuple4(2, *extra_row)
# arr2 has a different shape
arr2 = array_handler.vtk2array(vtk_arr)
self.assertEqual(arr2.shape, (3, 4))
# check values
expected = numpy.vstack((arr, numpy.array(extra_row)))
self.assertEqual(numpy.sum(arr2 - expected), 0)
def test_id_array(self):
"""Test if a vtkIdTypeArray is converted correctly."""
arr = vtk.vtkIdTypeArray()
arr.SetNumberOfTuples(10)
for i in range(10):
arr.SetValue(i, i)
np = array_handler.vtk2array(arr)
self.assertEqual(numpy.all(np == list(range(10))), True)
if __name__ == "__main__":
unittest.main()
|