1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
|
/*
* AES-NI support functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
*/
#include "common.h"
#if defined(MBEDTLS_AESNI_C)
#include "aesni.h"
#include <string.h>
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#if MBEDTLS_AESNI_HAVE_CODE == 2
#if defined(__GNUC__)
#include <cpuid.h>
#elif defined(_MSC_VER)
#include <intrin.h>
#else
#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
#endif
#include <immintrin.h>
#endif
#if defined(MBEDTLS_ARCH_IS_X86)
#if defined(MBEDTLS_COMPILER_IS_GCC)
#pragma GCC push_options
#pragma GCC target ("pclmul,sse2,aes")
#define MBEDTLS_POP_TARGET_PRAGMA
#elif defined(__clang__) && (__clang_major__ >= 5)
#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
#define MBEDTLS_POP_TARGET_PRAGMA
#endif
#endif
#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
/*
* AES-NI support detection routine
*/
int mbedtls_aesni_has_support(unsigned int what)
{
/* To avoid a race condition, tell the compiler that the assignment
* `done = 1` and the assignment to `c` may not be reordered.
* https://github.com/Mbed-TLS/mbedtls/issues/9840
*
* Note that we may also be worried about memory access reordering,
* but fortunately the x86 memory model is not too wild: stores
* from the same thread are observed consistently by other threads.
* (See example 8-1 in Sewell et al., "x86-TSO: A Rigorous and Usable
* Programmer’s Model for x86 Multiprocessors", CACM, 2010,
* https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf)
*/
static volatile int done = 0;
static volatile unsigned int c = 0;
if (!done) {
#if MBEDTLS_AESNI_HAVE_CODE == 2
static int info[4] = { 0, 0, 0, 0 };
#if defined(_MSC_VER)
__cpuid(info, 1);
#else
__cpuid(1, info[0], info[1], info[2], info[3]);
#endif
c = info[2];
#else /* AESNI using asm */
asm ("movl $1, %%eax \n\t"
"cpuid \n\t"
: "=c" (c)
:
: "eax", "ebx", "edx");
#endif /* MBEDTLS_AESNI_HAVE_CODE */
done = 1;
}
return (c & what) != 0;
}
#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
#if MBEDTLS_AESNI_HAVE_CODE == 2
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
unsigned nr = ctx->nr; // Number of remaining rounds
// Load round key 0
__m128i state;
memcpy(&state, input, 16);
state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
++rk;
--nr;
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
if (mode == MBEDTLS_AES_DECRYPT) {
while (nr != 0) {
state = _mm_aesdec_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesdeclast_si128(state, *rk);
} else
#else
(void) mode;
#endif
{
while (nr != 0) {
state = _mm_aesenc_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesenclast_si128(state, *rk);
}
memcpy(output, &state, 16);
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
static void gcm_clmul(const __m128i aa, const __m128i bb,
__m128i *cc, __m128i *dd)
{
/*
* Caryless multiplication dd:cc = aa * bb
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
*cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
*dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
__m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
__m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
ee = ff; // e1+f1:e0+f0
ff = _mm_srli_si128(ff, 8); // 0:e1+f1
ee = _mm_slli_si128(ee, 8); // e0+f0:0
*dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
*cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
}
static void gcm_shift(__m128i *cc, __m128i *dd)
{
/* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18). */
// // *cc = r1:r0
// // *dd = r3:r2
__m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
__m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
__m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
__m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
__m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
*cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
*dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
}
static __m128i gcm_reduce(__m128i xx)
{
// // xx = x1:x0
/* [CLMUL-WP] Algorithm 5 Step 2 */
__m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
__m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
__m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
__m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
}
static __m128i gcm_mix(__m128i dx)
{
/* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
__m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
__m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
__m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
__m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
__m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
__m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
__m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
}
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
__m128i aa = { 0 }, bb = { 0 }, cc, dd;
/* The inputs are in big-endian order, so byte-reverse them */
for (size_t i = 0; i < 16; i++) {
((uint8_t *) &aa)[i] = a[15 - i];
((uint8_t *) &bb)[i] = b[15 - i];
}
gcm_clmul(aa, bb, &cc, &dd);
gcm_shift(&cc, &dd);
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently dd:cc holds x3:x2:x1:x0 (already shifted).
*/
__m128i dx = gcm_reduce(cc);
__m128i xh = gcm_mix(dx);
cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
/* Now byte-reverse the outputs */
for (size_t i = 0; i < 16; i++) {
c[i] = ((uint8_t *) &cc)[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
__m128i *ik = (__m128i *) invkey;
const __m128i *fk = (const __m128i *) fwdkey + nr;
*ik = *fk;
for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
*ik = _mm_aesimc_si128(*fk);
}
*ik = *fk;
}
#endif
/*
* Key expansion, 128-bit case
*/
static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
{
/*
* Finish generating the next round key.
*
* On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
*
* On exit, xword is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and this is returned, to be written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
state = _mm_slli_si128(state, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
state = _mm_slli_si128(state, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
state = _mm_slli_si128(state, 4); // r0:0:0:0
state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
return state;
}
static void aesni_setkey_enc_128(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
unsigned char *rk)
{
/*
* Finish generating the next 6 quarter-keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
* and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = xword; // = r9:r8:r7:r6
xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
*state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
*state1 = xword; // = stuff:stuff:r11:r10
/* Store state0 and the low half of state1 into rk, which is conceptually
* an array of 24-byte elements. Since 24 is not a multiple of 16,
* rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
memcpy(rk, state0, 16);
memcpy(rk + 16, state1, 8);
}
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
/* First round: use original key */
memcpy(rk, key, 24);
/* aes.c guarantees that rk is aligned on a 16-byte boundary. */
__m128i state0 = ((__m128i *) rk)[0];
__m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
__m128i *rk0, __m128i *rk1)
{
/*
* Finish generating the next two round keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
* xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
*/
xword = _mm_shuffle_epi32(xword, 0xff);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
state0 = _mm_xor_si128(state0, xword);
*rk0 = state0;
/* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
xword = _mm_aeskeygenassist_si128(state0, 0x00);
xword = _mm_shuffle_epi32(xword, 0xaa);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
state1 = _mm_xor_si128(state1, xword);
*rk1 = state1;
}
static void aesni_setkey_enc_256(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
memcpy(&rk[1], key + 16, 16);
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
#if defined(__clang__)
#pragma clang attribute pop
#elif defined(__GNUC__)
#pragma GCC pop_options
#endif
#undef MBEDTLS_POP_TARGET_PRAGMA
#endif
#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning \
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
/*
* Binutils needs to be at least 2.19 to support AES-NI instructions.
* Unfortunately, a lot of users have a lower version now (2014-04).
* Emit bytecode directly in order to support "old" version of gas.
*
* Opcodes from the Intel architecture reference manual, vol. 3.
* We always use registers, so we don't need prefixes for memory operands.
* Operand macros are in gas order (src, dst) as opposed to Intel order
* (dst, src) in order to blend better into the surrounding assembly code.
*/
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
#define xmm0_xmm0 "0xC0"
#define xmm0_xmm1 "0xC8"
#define xmm0_xmm2 "0xD0"
#define xmm0_xmm3 "0xD8"
#define xmm0_xmm4 "0xE0"
#define xmm1_xmm0 "0xC1"
#define xmm1_xmm2 "0xD1"
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
asm ("movdqu (%3), %%xmm0 \n\t" // load input
"movdqu (%1), %%xmm1 \n\t" // load round key 0
"pxor %%xmm1, %%xmm0 \n\t" // round 0
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // normal rounds = nr - 1
"test %2, %2 \n\t" // mode?
"jz 2f \n\t" // 0 = decrypt
"1: \n\t" // encryption loop
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENC(xmm1_xmm0) // do round
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // loop
"jnz 1b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENCLAST(xmm1_xmm0) // last round
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
"jmp 3f \n\t"
"2: \n\t" // decryption loop
"movdqu (%1), %%xmm1 \n\t"
AESDEC(xmm1_xmm0) // do round
"add $16, %1 \n\t"
"subl $1, %0 \n\t"
"jnz 2b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESDECLAST(xmm1_xmm0) // last round
#endif
"3: \n\t"
"movdqu %%xmm0, (%4) \n\t" // export output
:
: "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
: "memory", "cc", "xmm0", "xmm1", "0", "1");
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
unsigned char aa[16], bb[16], cc[16];
size_t i;
/* The inputs are in big-endian order, so byte-reverse them */
for (i = 0; i < 16; i++) {
aa[i] = a[15 - i];
bb[i] = b[15 - i];
}
asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
"movdqu (%1), %%xmm1 \n\t" // b1:b0
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
"movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n\t" // same
"movdqa %%xmm1, %%xmm4 \n\t" // same
PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n\t" // same
"psrldq $8, %%xmm4 \n\t" // 0:e1+f1
"pslldq $8, %%xmm3 \n\t" // e0+f0:0
"pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
"pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18)
*/
"movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
"movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
"psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
"psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
"psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
"psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
"movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
"pslldq $8, %%xmm3 \n\t" // r0>>63:0
"pslldq $8, %%xmm4 \n\t" // r2>>63:0
"psrldq $8, %%xmm5 \n\t" // 0:r1>>63
"por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
"por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
"por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
"movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
"movdqa %%xmm1, %%xmm4 \n\t" // same
"movdqa %%xmm1, %%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
"psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
"psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
/* Step 2 (2) */
"pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
"pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
"pslldq $8, %%xmm3 \n\t" // a+b+c:0
"pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
/* Steps 3 and 4 */
"movdqa %%xmm1,%%xmm0 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
"psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
"psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
"pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
"pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
// e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
// bits carried from d. Now get those\t bits back in.
"movdqa %%xmm1,%%xmm3 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // d<<63:stuff
"psllq $62, %%xmm4 \n\t" // d<<62:stuff
"psllq $57, %%xmm5 \n\t" // d<<57:stuff
"pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
"pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
"psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
"pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
"pxor %%xmm1, %%xmm0 \n\t" // h1:h0
"pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
"movdqu %%xmm0, (%2) \n\t" // done
:
: "r" (aa), "r" (bb), "r" (cc)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
/* Now byte-reverse the outputs */
for (i = 0; i < 16; i++) {
c[i] = cc[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
unsigned char *ik = invkey;
const unsigned char *fk = fwdkey + 16 * nr;
memcpy(ik, fk, 16);
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
asm ("movdqu (%0), %%xmm0 \n\t"
AESIMC(xmm0_xmm0)
"movdqu %%xmm0, (%1) \n\t"
:
: "r" (fk), "r" (ik)
: "memory", "xmm0");
}
memcpy(ik, fk, 16);
}
#endif
/*
* Key expansion, 128-bit case
*/
static void aesni_setkey_enc_128(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
"movdqu %%xmm0, (%0) \n\t" // as round key 0
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm1 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
"add $16, %0 \n\t" // point to next round key
"movdqu %%xmm0, (%0) \n\t" // write it
"ret \n\t"
/* Main "loop" */
"2: \n\t"
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "xmm0", "xmm1", "0");
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movq 16(%1), %%xmm1 \n\t"
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"ret \n\t"
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_256(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movdqu 16(%1), %%xmm1 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
AESKEYGENA(xmm0_xmm2, "0x00")
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm2, %%xmm1 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"ret \n\t"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
/*
* Key expansion, wrapper
*/
int mbedtls_aesni_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits)
{
switch (bits) {
case 128: aesni_setkey_enc_128(rk, key); break;
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
case 192: aesni_setkey_enc_192(rk, key); break;
case 256: aesni_setkey_enc_256(rk, key); break;
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
return 0;
}
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */
|