1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
|
/*
* Core bignum functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include <string.h>
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#include "constant_time_internal.h"
#include "mbedtls/platform.h"
#include "bignum_core.h"
#include "bignum_core_invasive.h"
#include "bn_mul.h"
#include "constant_time_internal.h"
size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
{
#if defined(__has_builtin)
#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
#define core_clz __builtin_clz
#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
#define core_clz __builtin_clzl
#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
#define core_clz __builtin_clzll
#endif
#endif
#if defined(core_clz)
return (size_t) core_clz(a);
#else
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for (j = 0; j < biL; j++) {
if (a & mask) {
break;
}
mask >>= 1;
}
return j;
#endif
}
size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
{
int i;
size_t j;
for (i = ((int) A_limbs) - 1; i >= 0; i--) {
if (A[i] != 0) {
j = biL - mbedtls_mpi_core_clz(A[i]);
return (i * biL) + j;
}
}
return 0;
}
static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
{
if (MBEDTLS_IS_BIG_ENDIAN) {
/* Nothing to do on bigendian systems. */
return a;
} else {
#if defined(MBEDTLS_HAVE_INT32)
return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
#elif defined(MBEDTLS_HAVE_INT64)
return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
#endif
}
}
void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
size_t A_limbs)
{
mbedtls_mpi_uint *cur_limb_left;
mbedtls_mpi_uint *cur_limb_right;
if (A_limbs == 0) {
return;
}
/*
* Traverse limbs and
* - adapt byte-order in each limb
* - swap the limbs themselves.
* For that, simultaneously traverse the limbs from left to right
* and from right to left, as long as the left index is not bigger
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right--) {
mbedtls_mpi_uint tmp;
/* Note that if cur_limb_left == cur_limb_right,
* this code effectively swaps the bytes only once. */
tmp = mpi_bigendian_to_host(*cur_limb_left);
*cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
*cur_limb_right = tmp;
}
}
/* Whether min <= A, in constant time.
* A_limbs must be at least 1. */
mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
const mbedtls_mpi_uint *A,
size_t A_limbs)
{
/* min <= least significant limb? */
mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
/* limbs other than the least significant one are all zero? */
mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
for (size_t i = 1; i < A_limbs; i++) {
msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
}
/* min <= A iff the lowest limb of A is >= min or the other limbs
* are not all zero. */
return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
}
mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
for (size_t i = limbs; i > 0; i--) {
/*
* If B[i - 1] < A[i - 1] then A < B is false and the result must
* remain 0.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
done = mbedtls_ct_bool_or(done, cond);
/*
* If A[i - 1] < B[i - 1] then A < B is true.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
done = mbedtls_ct_bool_or(done, cond);
}
/*
* If all the limbs were equal, then the numbers are equal, A < B is false
* and leaving the result 0 is correct.
*/
return ret;
}
void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
mbedtls_ct_condition_t assign)
{
if (X == A) {
return;
}
/* This function is very performance-sensitive for RSA. For this reason
* we have the loop below, instead of calling mbedtls_ct_memcpy_if
* (this is more optimal since here we don't have to handle the case where
* we copy awkwardly sized data).
*/
for (size_t i = 0; i < limbs; i++) {
X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
}
}
void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
mbedtls_mpi_uint *Y,
size_t limbs,
mbedtls_ct_condition_t swap)
{
if (X == Y) {
return;
}
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint tmp = X[i];
X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
}
}
int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length)
{
const size_t limbs = CHARS_TO_LIMBS(input_length);
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
if (X != NULL) {
memset(X, 0, X_limbs * ciL);
for (size_t i = 0; i < input_length; i++) {
size_t offset = ((i % ciL) << 3);
X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
}
}
return 0;
}
int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length)
{
const size_t limbs = CHARS_TO_LIMBS(input_length);
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
/* If X_limbs is 0, input_length must also be 0 (from previous test).
* Nothing to do. */
if (X_limbs == 0) {
return 0;
}
memset(X, 0, X_limbs * ciL);
/* memcpy() with (NULL, 0) is undefined behaviour */
if (input_length != 0) {
size_t overhead = (X_limbs * ciL) - input_length;
unsigned char *Xp = (unsigned char *) X;
memcpy(Xp + overhead, input, input_length);
}
mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
return 0;
}
int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length)
{
size_t stored_bytes = A_limbs * ciL;
size_t bytes_to_copy;
if (stored_bytes < output_length) {
bytes_to_copy = stored_bytes;
} else {
bytes_to_copy = output_length;
/* The output buffer is smaller than the allocated size of A.
* However A may fit if its leading bytes are zero. */
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
if (GET_BYTE(A, i) != 0) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
}
}
for (size_t i = 0; i < bytes_to_copy; i++) {
output[i] = GET_BYTE(A, i);
}
if (stored_bytes < output_length) {
/* Write trailing 0 bytes */
memset(output + stored_bytes, 0, output_length - stored_bytes);
}
return 0;
}
int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
size_t X_limbs,
unsigned char *output,
size_t output_length)
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
stored_bytes = X_limbs * ciL;
if (stored_bytes < output_length) {
/* There is enough space in the output buffer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = output + output_length - stored_bytes;
memset(output, 0, output_length - stored_bytes);
} else {
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = output_length;
p = output;
for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
if (GET_BYTE(X, i) != 0) {
return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
}
}
}
for (size_t i = 0; i < bytes_to_copy; i++) {
p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
}
return 0;
}
void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
size_t count)
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / biL;
v1 = count & (biL - 1);
if (v0 > limbs || (v0 == limbs && v1 > 0)) {
memset(X, 0, limbs * ciL);
return;
}
/*
* shift by count / limb_size
*/
if (v0 > 0) {
for (i = 0; i < limbs - v0; i++) {
X[i] = X[i + v0];
}
for (; i < limbs; i++) {
X[i] = 0;
}
}
/*
* shift by count % limb_size
*/
if (v1 > 0) {
for (i = limbs; i > 0; i--) {
r1 = X[i - 1] << (biL - v1);
X[i - 1] >>= v1;
X[i - 1] |= r0;
r0 = r1;
}
}
}
void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
size_t count)
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / (biL);
v1 = count & (biL - 1);
/*
* shift by count / limb_size
*/
if (v0 > 0) {
for (i = limbs; i > v0; i--) {
X[i - 1] = X[i - v0 - 1];
}
for (; i > 0; i--) {
X[i - 1] = 0;
}
}
/*
* shift by count % limb_size
*/
if (v1 > 0) {
for (i = v0; i < limbs; i++) {
r1 = X[i] >> (biL - v1);
X[i] <<= v1;
X[i] |= r0;
r0 = r1;
}
}
}
mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_mpi_uint c = 0;
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint t = c + A[i];
c = (t < A[i]);
t += B[i];
c += (t < B[i]);
X[i] = t;
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned cond)
{
mbedtls_mpi_uint c = 0;
mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
mbedtls_mpi_uint t = c + X[i];
c = (t < X[i]);
t += add;
c += (t < add);
X[i] = t;
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
mbedtls_mpi_uint c = 0;
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint z = (A[i] < c);
mbedtls_mpi_uint t = A[i] - c;
c = (t < B[i]) + z;
X[i] = t - B[i];
}
return c;
}
mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b)
{
mbedtls_mpi_uint c = 0; /* carry */
/*
* It is a documented precondition of this function that d_len >= s_len.
* If that's not the case, we swap these round: this turns what would be
* a buffer overflow into an incorrect result.
*/
if (d_len < s_len) {
s_len = d_len;
}
size_t excess_len = d_len - s_len;
size_t steps_x8 = s_len / 8;
size_t steps_x1 = s_len & 7;
while (steps_x8--) {
MULADDC_X8_INIT
MULADDC_X8_CORE
MULADDC_X8_STOP
}
while (steps_x1--) {
MULADDC_X1_INIT
MULADDC_X1_CORE
MULADDC_X1_STOP
}
while (excess_len--) {
*d += c;
c = (*d < c);
d++;
}
return c;
}
void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A, size_t A_limbs,
const mbedtls_mpi_uint *B, size_t B_limbs)
{
memset(X, 0, (A_limbs + B_limbs) * ciL);
for (size_t i = 0; i < B_limbs; i++) {
(void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
}
}
/*
* Fast Montgomery initialization (thanks to Tom St Denis).
*/
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
{
mbedtls_mpi_uint x = N[0];
x += ((N[0] + 2) & 4) << 1;
for (unsigned int i = biL; i >= 8; i /= 2) {
x *= (2 - (N[0] * x));
}
return ~x + 1;
}
void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_limbs,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T)
{
memset(T, 0, (2 * AN_limbs + 1) * ciL);
for (size_t i = 0; i < AN_limbs; i++) {
/* T = (T + u0*B + u1*N) / 2^biL */
mbedtls_mpi_uint u0 = A[i];
mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
(void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
T++;
}
/*
* The result we want is (T >= N) ? T - N : T.
*
* For better constant-time properties in this function, we always do the
* subtraction, with the result in X.
*
* We also look to see if there was any carry in the final additions in the
* loop above.
*/
mbedtls_mpi_uint carry = T[AN_limbs];
mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
/*
* Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
*
* T can be in one of 3 ranges:
*
* 1) T < N : (carry, borrow) = (0, 1): we want T
* 2) N <= T < R : (carry, borrow) = (0, 0): we want X
* 3) T >= R : (carry, borrow) = (1, 1): we want X
*
* and (carry, borrow) = (1, 0) can't happen.
*
* So the correct return value is already in X if (carry ^ borrow) = 0,
* but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
*/
mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
(unsigned char *) X,
(unsigned char *) T,
NULL,
AN_limbs * sizeof(mbedtls_mpi_uint));
}
int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
const mbedtls_mpi *N)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
cleanup:
return ret;
}
MBEDTLS_STATIC_TESTABLE
void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
const mbedtls_mpi_uint *table,
size_t limbs,
size_t count,
size_t index)
{
for (size_t i = 0; i < count; i++, table += limbs) {
mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
}
}
/* Fill X with n_bytes random bytes.
* X must already have room for those bytes.
* The ordering of the bytes returned from the RNG is suitable for
* deterministic ECDSA (see RFC 6979 §3.3 and the specification of
* mbedtls_mpi_core_random()).
*/
int mbedtls_mpi_core_fill_random(
mbedtls_mpi_uint *X, size_t X_limbs,
size_t n_bytes,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const size_t limbs = CHARS_TO_LIMBS(n_bytes);
const size_t overhead = (limbs * ciL) - n_bytes;
if (X_limbs < limbs) {
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
memset(X, 0, overhead);
memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
mbedtls_mpi_core_bigendian_to_host(X, limbs);
cleanup:
return ret;
}
int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
mbedtls_mpi_uint min,
const mbedtls_mpi_uint *N,
size_t limbs,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
size_t n_bytes = (n_bits + 7) / 8;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/*
* When min == 0, each try has at worst a probability 1/2 of failing
* (the msb has a probability 1/2 of being 0, and then the result will
* be < N), so after 30 tries failure probability is a most 2**(-30).
*
* When N is just below a power of 2, as is the case when generating
* a random scalar on most elliptic curves, 1 try is enough with
* overwhelming probability. When N is just above a power of 2,
* as when generating a random scalar on secp224k1, each try has
* a probability of failing that is almost 1/2.
*
* The probabilities are almost the same if min is nonzero but negligible
* compared to N. This is always the case when N is crypto-sized, but
* it's convenient to support small N for testing purposes. When N
* is small, use a higher repeat count, otherwise the probability of
* failure is macroscopic.
*/
int count = (n_bytes > 4 ? 30 : 250);
/*
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
* - use the same byte ordering;
* - keep the leftmost n_bits bits of the generated octet string;
* - try until result is in the desired range.
* This also avoids any bias, which is especially important for ECDSA.
*/
do {
MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
n_bytes,
f_rng, p_rng));
mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
if (--count == 0) {
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
} while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
cleanup:
return ret;
}
static size_t exp_mod_get_window_size(size_t Ebits)
{
#if MBEDTLS_MPI_WINDOW_SIZE >= 6
return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
#elif MBEDTLS_MPI_WINDOW_SIZE == 5
return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
#elif MBEDTLS_MPI_WINDOW_SIZE > 1
return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
#else
(void) Ebits;
return 1;
#endif
}
size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
{
const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
const size_t welem = ((size_t) 1) << wsize;
/* How big does each part of the working memory pool need to be? */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
const size_t temp_limbs = 2 * AN_limbs + 1;
return table_limbs + select_limbs + temp_limbs;
}
static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *RR,
size_t welem,
mbedtls_mpi_uint *Wtable,
mbedtls_mpi_uint *temp)
{
/* W[0] = 1 (in Montgomery presentation) */
memset(Wtable, 0, AN_limbs * ciL);
Wtable[0] = 1;
mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
/* W[1] = A (already in Montgomery presentation) */
mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
memcpy(W1, A, AN_limbs * ciL);
/* W[i+1] = W[i] * W[1], i >= 2 */
mbedtls_mpi_uint *Wprev = W1;
for (size_t i = 2; i < welem; i++) {
mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
Wprev = Wcur;
}
}
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
void (*mbedtls_safe_codepath_hook)(void) = NULL;
void (*mbedtls_unsafe_codepath_hook)(void) = NULL;
#endif
/*
* This function calculates the indices of the exponent where the exponentiation algorithm should
* start processing.
*
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
* this function is not constant time with respect to the exponent (parameter E).
*/
static inline void exp_mod_calc_first_bit_optionally_safe(const mbedtls_mpi_uint *E,
size_t E_limbs,
int E_public,
size_t *E_limb_index,
size_t *E_bit_index)
{
if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
/*
* Skip leading zero bits.
*/
size_t E_bits = mbedtls_mpi_core_bitlen(E, E_limbs);
if (E_bits == 0) {
/*
* If E is 0 mbedtls_mpi_core_bitlen() returns 0. Even if that is the case, we will want
* to represent it as a single 0 bit and as such the bitlength will be 1.
*/
E_bits = 1;
}
*E_limb_index = E_bits / biL;
*E_bit_index = E_bits % biL;
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
if (mbedtls_unsafe_codepath_hook != NULL) {
mbedtls_unsafe_codepath_hook();
}
#endif
} else {
/*
* Here we need to be constant time with respect to E and can't do anything better than
* start at the first allocated bit.
*/
*E_limb_index = E_limbs;
*E_bit_index = 0;
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
if (mbedtls_safe_codepath_hook != NULL) {
mbedtls_safe_codepath_hook();
}
#endif
}
}
/*
* Warning! If the parameter window_public has MBEDTLS_MPI_IS_PUBLIC as its value, this function is
* not constant time with respect to the window parameter and consequently the exponent of the
* exponentiation (parameter E of mbedtls_mpi_core_exp_mod_optionally_safe).
*/
static inline void exp_mod_table_lookup_optionally_safe(mbedtls_mpi_uint *Wselect,
mbedtls_mpi_uint *Wtable,
size_t AN_limbs, size_t welem,
mbedtls_mpi_uint window,
int window_public)
{
if (window_public == MBEDTLS_MPI_IS_PUBLIC) {
memcpy(Wselect, Wtable + window * AN_limbs, AN_limbs * ciL);
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
if (mbedtls_unsafe_codepath_hook != NULL) {
mbedtls_unsafe_codepath_hook();
}
#endif
} else {
/* Select Wtable[window] without leaking window through
* memory access patterns. */
mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
AN_limbs, welem, window);
#if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
if (mbedtls_safe_codepath_hook != NULL) {
mbedtls_safe_codepath_hook();
}
#endif
}
}
/* Exponentiation: X := A^E mod N.
*
* Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
* this function is not constant time with respect to the exponent (parameter E).
*
* A must already be in Montgomery form.
*
* As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
*
* RR must contain 2^{2*biL} mod N.
*
* The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
* (The difference is that the body in our loop processes a single bit instead
* of a full window.)
*/
static void mbedtls_mpi_core_exp_mod_optionally_safe(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
const mbedtls_mpi_uint *E,
size_t E_limbs,
int E_public,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
/* We'll process the bits of E from most significant
* (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
* (limb_index=0, E_bit_index=0). */
size_t E_limb_index = E_limbs;
size_t E_bit_index = 0;
exp_mod_calc_first_bit_optionally_safe(E, E_limbs, E_public,
&E_limb_index, &E_bit_index);
const size_t wsize = exp_mod_get_window_size(E_limb_index * biL);
const size_t welem = ((size_t) 1) << wsize;
/* This is how we will use the temporary storage T, which must have space
* for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
/* Pointers to specific parts of the temporary working memory pool */
mbedtls_mpi_uint *const Wtable = T;
mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
mbedtls_mpi_uint *const temp = Wselect + select_limbs;
/*
* Window precomputation
*/
const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
/* Set Wtable[i] = A^i (in Montgomery representation) */
exp_mod_precompute_window(A, N, AN_limbs,
mm, RR,
welem, Wtable, temp);
/*
* Fixed window exponentiation
*/
/* X = 1 (in Montgomery presentation) initially */
memcpy(X, Wtable, AN_limbs * ciL);
/* At any given time, window contains window_bits bits from E.
* window_bits can go up to wsize. */
size_t window_bits = 0;
mbedtls_mpi_uint window = 0;
do {
/* Square */
mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
/* Move to the next bit of the exponent */
if (E_bit_index == 0) {
--E_limb_index;
E_bit_index = biL - 1;
} else {
--E_bit_index;
}
/* Insert next exponent bit into window */
++window_bits;
window <<= 1;
window |= (E[E_limb_index] >> E_bit_index) & 1;
/* Clear window if it's full. Also clear the window at the end,
* when we've finished processing the exponent. */
if (window_bits == wsize ||
(E_bit_index == 0 && E_limb_index == 0)) {
exp_mod_table_lookup_optionally_safe(Wselect, Wtable, AN_limbs, welem,
window, E_public);
/* Multiply X by the selected element. */
mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
temp);
window = 0;
window_bits = 0;
}
} while (!(E_bit_index == 0 && E_limb_index == 0));
}
void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N, size_t AN_limbs,
const mbedtls_mpi_uint *E, size_t E_limbs,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_exp_mod_optionally_safe(X,
A,
N,
AN_limbs,
E,
E_limbs,
MBEDTLS_MPI_IS_SECRET,
RR,
T);
}
void mbedtls_mpi_core_exp_mod_unsafe(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N, size_t AN_limbs,
const mbedtls_mpi_uint *E, size_t E_limbs,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_exp_mod_optionally_safe(X,
A,
N,
AN_limbs,
E,
E_limbs,
MBEDTLS_MPI_IS_PUBLIC,
RR,
T);
}
mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
mbedtls_mpi_uint c, /* doubles as carry */
size_t limbs)
{
for (size_t i = 0; i < limbs; i++) {
mbedtls_mpi_uint s = A[i];
mbedtls_mpi_uint t = s - c;
c = (t > s);
X[i] = t;
}
return c;
}
mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
size_t limbs)
{
volatile const mbedtls_mpi_uint *force_read_A = A;
mbedtls_mpi_uint bits = 0;
for (size_t i = 0; i < limbs; i++) {
bits |= force_read_A[i];
}
return mbedtls_ct_bool(bits);
}
void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *rr,
mbedtls_mpi_uint *T)
{
mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
}
void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T)
{
const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
}
/*
* Compute X = A - B mod N.
* Both A and B must be in [0, N) and so will the output.
*/
static void mpi_core_sub_mod(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
const mbedtls_mpi_uint *N,
size_t limbs)
{
mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, limbs);
(void) mbedtls_mpi_core_add_if(X, N, limbs, (unsigned) c);
}
/*
* Divide X by 2 mod N in place, assuming N is odd.
* The input must be in [0, N) and so will the output.
*/
MBEDTLS_STATIC_TESTABLE
void mbedtls_mpi_core_div2_mod_odd(mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *N,
size_t limbs)
{
/* If X is odd, add N to make it even before shifting. */
unsigned odd = (unsigned) X[0] & 1;
mbedtls_mpi_uint c = mbedtls_mpi_core_add_if(X, N, limbs, odd);
mbedtls_mpi_core_shift_r(X, limbs, 1);
X[limbs - 1] |= c << (biL - 1);
}
/*
* Constant-time GCD and modular inversion - odd modulus.
*
* Pre-conditions: see public documentation.
*
* See https://www.jstage.jst.go.jp/article/transinf/E106.D/9/E106.D_2022ICP0009/_pdf
*
* The paper gives two computationally equivalent algorithms: Alg 7 (readable)
* and Alg 8 (constant-time). We use a third version that's hopefully both:
*
* u, v = A, N # N is called p in the paper but doesn't have to be prime
* q, r = 0, 1
* repeat bits(A_limbs + N_limbs) times:
* d = v - u # t1 in Alg 7
* t1 = (u and v both odd) ? u : d # t1 in Alg 8
* t2 = (u and v both odd) ? d : (u odd) ? v : u # t2 in Alg 8
* t2 >>= 1
* swap = t1 > t2 # similar to s, z in Alg 8
* u, v = (swap) ? t2, t1 : t1, t2
*
* d = r - q mod N # t2 in Alg 7
* t1 = (u and v both odd) ? q : d # t3 in Alg 8
* t2 = (u and v both odd) ? d : (u odd) ? r : q # t4 Alg 8
* t2 /= 2 mod N # see below (pre_com)
* q, r = (swap) ? t2, t1 : t1, t2
* return v, q # v: GCD, see Alg 6; q: no mult by pre_com, see below
*
* The ternary operators in the above pseudo-code need to be realised in a
* constant-time fashion. We use conditional assign for t1, t2 and conditional
* swap for the final update. (Note: the similarity between branches of Alg 7
* are highlighted in tables 2 and 3 and the surrounding text.)
*
* Also, we re-order operations, grouping things related to the inverse, which
* facilitates making its computation optional, and requires fewer temporaries.
*
* The only actual change from the paper is dropping the trick with pre_com,
* which I think complicates things for no benefit.
* See the comment on the big I != NULL block below for details.
*/
void mbedtls_mpi_core_gcd_modinv_odd(mbedtls_mpi_uint *G,
mbedtls_mpi_uint *I,
const mbedtls_mpi_uint *A,
size_t A_limbs,
const mbedtls_mpi_uint *N,
size_t N_limbs,
mbedtls_mpi_uint *T)
{
/* GCD and modinv, names common to Alg 7 and Alg 8 */
mbedtls_mpi_uint *u = T + 0 * N_limbs;
mbedtls_mpi_uint *v = G;
/* GCD and modinv, my name (t1, t2 from Alg 7) */
mbedtls_mpi_uint *d = T + 1 * N_limbs;
/* GCD and modinv, names from Alg 8 (note: t1, t2 from Alg 7 are d above) */
mbedtls_mpi_uint *t1 = T + 2 * N_limbs;
mbedtls_mpi_uint *t2 = T + 3 * N_limbs;
/* modinv only, names common to Alg 7 and Alg 8 */
mbedtls_mpi_uint *q = I;
mbedtls_mpi_uint *r = I != NULL ? T + 4 * N_limbs : NULL;
/*
* Initial values:
* u, v = A, N
* q, r = 0, 1
*
* We only write to G (aka v) after reading from inputs (A and N), which
* allows aliasing, except with N when I != NULL, as then we'll be operating
* mod N on q and r later - see the public documentation.
*/
if (A_limbs > N_limbs) {
/* Violating this precondition should not result in memory errors. */
A_limbs = N_limbs;
}
memcpy(u, A, A_limbs * ciL);
memset((char *) u + A_limbs * ciL, 0, (N_limbs - A_limbs) * ciL);
/* Avoid possible UB with memcpy when src == dst. */
if (v != N) {
memcpy(v, N, N_limbs * ciL);
}
if (I != NULL) {
memset(q, 0, N_limbs * ciL);
memset(r, 0, N_limbs * ciL);
r[0] = 1;
}
/*
* At each step, out of u, v, v - u we keep one, shift another, and discard
* the third, then update (u, v) with the ordered result.
* Then we mirror those actions with q, r, r - q mod N.
*
* Loop invariants:
* u <= v (on entry: A <= N)
* GCD(u, v) == GCD(A, N) (on entry: trivial)
* v = A * q mod N (on entry: N = A * 0 mod N)
* u = A * r mod N (on entry: A = A * 1 mod N)
* q, r in [0, N) (on entry: 0, 1)
*
* On exit:
* u = 0
* v = GCD(A, N) = A * q mod N
* if v == 1 then 1 = A * q mod N ie q is A's inverse mod N
* r = 0
*
* The exit state is a fixed point of the loop's body.
* Alg 7 and Alg 8 use 2 * bitlen(N) iterations but Theorem 2 (above in the
* paper) says bitlen(A) + bitlen(N) is actually enough.
*/
for (size_t i = 0; i < (A_limbs + N_limbs) * biL; i++) {
/* s, z in Alg 8 - use meaningful names instead */
mbedtls_ct_condition_t u_odd = mbedtls_ct_bool(u[0] & 1);
mbedtls_ct_condition_t v_odd = mbedtls_ct_bool(v[0] & 1);
/* Other conditions that will be useful below */
mbedtls_ct_condition_t u_odd_v_odd = mbedtls_ct_bool_and(u_odd, v_odd);
mbedtls_ct_condition_t v_even = mbedtls_ct_bool_not(v_odd);
mbedtls_ct_condition_t u_odd_v_even = mbedtls_ct_bool_and(u_odd, v_even);
/* This is called t1 in Alg 7 (no name in Alg 8).
* We know that u <= v so there is no carry */
(void) mbedtls_mpi_core_sub(d, v, u, N_limbs);
/* t1 (the thing that's kept) can be d (default) or u (if t2 is d) */
memcpy(t1, d, N_limbs * ciL);
mbedtls_mpi_core_cond_assign(t1, u, N_limbs, u_odd_v_odd);
/* t2 (the thing that's shifted) can be u (if even), or v (if even),
* or d (which is even if both u and v were odd) */
memcpy(t2, u, N_limbs * ciL);
mbedtls_mpi_core_cond_assign(t2, v, N_limbs, u_odd_v_even);
mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
mbedtls_mpi_core_shift_r(t2, N_limbs, 1); // t2 is even
/* Update u, v and re-order them if needed */
memcpy(u, t1, N_limbs * ciL);
memcpy(v, t2, N_limbs * ciL);
mbedtls_ct_condition_t swap = mbedtls_mpi_core_lt_ct(v, u, N_limbs);
mbedtls_mpi_core_cond_swap(u, v, N_limbs, swap);
/* Now, if modinv was requested, do the same with q, r, but:
* - decisions still based on u and v (their initial values);
* - operations are now mod N;
* - we re-use t1, t2 for what the paper calls t3, t4 in Alg 8.
*
* Here we slightly diverge from the paper and instead do the obvious
* thing that preserves the invariants involving q and r: mirror
* operations on u and v, ie also divide by 2 here (mod N).
*
* The paper uses a trick where it replaces division by 2 with
* multiplication by 2 here, and compensates in the end by multiplying
* by pre_com, which is probably intended as an optimisation.
*
* However I believe it's not actually an optimisation, since
* constant-time modular multiplication by 2 (left-shift + conditional
* subtract) is just as costly as constant-time modular division by 2
* (conditional add + right-shift). So, skip it and keep things simple.
*/
if (I != NULL) {
/* This is called t2 in Alg 7 (no name in Alg 8). */
mpi_core_sub_mod(d, q, r, N, N_limbs);
/* t3 (the thing that's kept) */
memcpy(t1, d, N_limbs * ciL);
mbedtls_mpi_core_cond_assign(t1, r, N_limbs, u_odd_v_odd);
/* t4 (the thing that's shifted) */
memcpy(t2, r, N_limbs * ciL);
mbedtls_mpi_core_cond_assign(t2, q, N_limbs, u_odd_v_even);
mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
mbedtls_mpi_core_div2_mod_odd(t2, N, N_limbs);
/* Update and possibly swap */
memcpy(r, t1, N_limbs * ciL);
memcpy(q, t2, N_limbs * ciL);
mbedtls_mpi_core_cond_swap(r, q, N_limbs, swap);
}
}
/* G and I already hold the correct values by virtue of being aliased */
}
#endif /* MBEDTLS_BIGNUM_C */
|