1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/* BEGIN_HEADER */
#include <alignment.h>
#include <stdint.h>
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wunreachable-code"
#endif
/*
* Convert a string of the form "abcd" (case-insensitive) to a uint64_t.
*/
static int parse_hex_string(char *hex_string, uint64_t *result)
{
uint8_t raw[8] = { 0 };
size_t olen;
if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) {
return 0;
}
*result = 0;
for (size_t i = 0; i < olen; i++) {
*result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8);
}
return 1;
}
/* END_HEADER */
/* BEGIN_CASE */
void mbedtls_unaligned_access(int size, int offset)
{
/* Define 64-bit aligned raw byte array */
uint64_t raw[2];
/* Populate with known data */
uint8_t *x = (uint8_t *) raw;
for (size_t i = 0; i < sizeof(raw); i++) {
x[i] = (uint8_t) i;
}
TEST_ASSERT(size == 16 || size == 32 || size == 64);
uint64_t r = 0;
switch (size) {
case 16:
r = mbedtls_get_unaligned_uint16(x + offset);
break;
case 32:
r = mbedtls_get_unaligned_uint32(x + offset);
break;
case 64:
r = mbedtls_get_unaligned_uint64(x + offset);
break;
}
/* Define expected result by manually aligning the raw bytes, and
* reading back with a normal pointer access. */
uint64_t raw_aligned_64;
uint16_t *raw_aligned_16 = (uint16_t *) &raw_aligned_64;
uint32_t *raw_aligned_32 = (uint32_t *) &raw_aligned_64;
memcpy(&raw_aligned_64, ((uint8_t *) &raw) + offset, size / 8);
/* Make a 16/32/64 byte read from the aligned location, and copy to expected */
uint64_t expected = 0;
switch (size) {
case 16:
expected = *raw_aligned_16;
break;
case 32:
expected = *raw_aligned_32;
break;
case 64:
expected = raw_aligned_64;
break;
}
TEST_EQUAL(r, expected);
/* Write sentinel to the part of the array we will test writing to */
for (size_t i = 0; i < (size_t) (size / 8); i++) {
x[i + offset] = 0xff;
}
/*
* Write back to the array with mbedtls_put_unaligned_uint16 and validate
* that the array is unchanged as a result.
*/
switch (size) {
case 16:
mbedtls_put_unaligned_uint16(x + offset, r);
break;
case 32:
mbedtls_put_unaligned_uint32(x + offset, r);
break;
case 64:
mbedtls_put_unaligned_uint64(x + offset, r);
break;
}
for (size_t i = 0; i < sizeof(x); i++) {
TEST_EQUAL(x[i], (uint8_t) i);
}
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_byteswap(char *input_str, int size, char *expected_str)
{
uint64_t input = 0, expected = 0;
TEST_ASSERT(parse_hex_string(input_str, &input));
TEST_ASSERT(parse_hex_string(expected_str, &expected));
/* Check against expected result */
uint64_t r = 0;
switch (size) {
case 16:
r = MBEDTLS_BSWAP16(input);
break;
case 32:
r = MBEDTLS_BSWAP32(input);
break;
case 64:
r = MBEDTLS_BSWAP64(input);
break;
default:
TEST_FAIL("size must be 16, 32 or 64");
}
TEST_EQUAL(r, expected);
/*
* Check byte by byte by extracting bytes from opposite ends of
* input and r.
*/
for (size_t i = 0; i < (size_t) (size / 8); i++) {
size_t s1 = i * 8;
size_t s2 = ((size / 8 - 1) - i) * 8;
uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1;
uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2;
TEST_EQUAL(a, b);
}
/* Check BSWAP(BSWAP(x)) == x */
switch (size) {
case 16:
r = MBEDTLS_BSWAP16(r);
TEST_EQUAL(r, input & 0xffff);
break;
case 32:
r = MBEDTLS_BSWAP32(r);
TEST_EQUAL(r, input & 0xffffffff);
break;
case 64:
r = MBEDTLS_BSWAP64(r);
TEST_EQUAL(r, input);
break;
}
}
/* END_CASE */
/* BEGIN_CASE */
void get_byte()
{
uint8_t data[16];
for (size_t i = 0; i < sizeof(data); i++) {
data[i] = (uint8_t) i;
}
uint64_t u64 = 0x0706050403020100;
for (size_t b = 0; b < 8; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u64);
break;
case 1:
actual = MBEDTLS_BYTE_1(u64);
break;
case 2:
actual = MBEDTLS_BYTE_2(u64);
break;
case 3:
actual = MBEDTLS_BYTE_3(u64);
break;
case 4:
actual = MBEDTLS_BYTE_4(u64);
break;
case 5:
actual = MBEDTLS_BYTE_5(u64);
break;
case 6:
actual = MBEDTLS_BYTE_6(u64);
break;
case 7:
actual = MBEDTLS_BYTE_7(u64);
break;
}
TEST_EQUAL(actual, expected);
}
uint32_t u32 = 0x03020100;
for (size_t b = 0; b < 4; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u32);
break;
case 1:
actual = MBEDTLS_BYTE_1(u32);
break;
case 2:
actual = MBEDTLS_BYTE_2(u32);
break;
case 3:
actual = MBEDTLS_BYTE_3(u32);
break;
}
TEST_EQUAL(actual, expected);
}
uint16_t u16 = 0x0100;
for (size_t b = 0; b < 2; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u16);
break;
case 1:
actual = MBEDTLS_BYTE_1(u16);
break;
}
TEST_EQUAL(actual, expected);
}
uint8_t u8 = 0x01;
uint8_t actual = MBEDTLS_BYTE_0(u8);
TEST_EQUAL(actual, u8);
}
/* END_CASE */
/* BEGIN_CASE */
void unaligned_access_endian_aware(int size, int offset, int big_endian)
{
TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64);
TEST_ASSERT(offset >= 0 && offset < 8);
/* Define 64-bit aligned raw byte array */
uint64_t raw[2];
/* Populate with known data: x == { 0, 1, 2, ... } */
uint8_t *x = (uint8_t *) raw;
for (size_t i = 0; i < sizeof(raw); i++) {
x[i] = (uint8_t) i;
}
uint64_t read = 0;
if (big_endian) {
switch (size) {
case 16:
read = MBEDTLS_GET_UINT16_BE(x, offset);
break;
case 24:
read = MBEDTLS_GET_UINT24_BE(x, offset);
break;
case 32:
read = MBEDTLS_GET_UINT32_BE(x, offset);
break;
case 64:
read = MBEDTLS_GET_UINT64_BE(x, offset);
break;
}
} else {
switch (size) {
case 16:
read = MBEDTLS_GET_UINT16_LE(x, offset);
break;
case 24:
read = MBEDTLS_GET_UINT24_LE(x, offset);
break;
case 32:
read = MBEDTLS_GET_UINT32_LE(x, offset);
break;
case 64:
read = MBEDTLS_GET_UINT64_LE(x, offset);
break;
}
}
/* Build up expected value byte by byte, in either big or little endian format */
uint64_t expected = 0;
for (size_t i = 0; i < (size_t) (size / 8); i++) {
uint64_t b = x[i + offset];
uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i);
expected |= b << shift;
}
/* Verify read */
TEST_EQUAL(read, expected);
/* Test writing back to memory. First write sentinel */
for (size_t i = 0; i < (size_t) (size / 8); i++) {
x[i + offset] = 0xff;
}
/* Overwrite sentinel with endian-aware write macro */
if (big_endian) {
switch (size) {
case 16:
MBEDTLS_PUT_UINT16_BE(read, x, offset);
break;
case 24:
MBEDTLS_PUT_UINT24_BE(read, x, offset);
break;
case 32:
MBEDTLS_PUT_UINT32_BE(read, x, offset);
break;
case 64:
MBEDTLS_PUT_UINT64_BE(read, x, offset);
break;
}
} else {
switch (size) {
case 16:
MBEDTLS_PUT_UINT16_LE(read, x, offset);
break;
case 24:
MBEDTLS_PUT_UINT24_LE(read, x, offset);
break;
case 32:
MBEDTLS_PUT_UINT32_LE(read, x, offset);
break;
case 64:
MBEDTLS_PUT_UINT64_LE(read, x, offset);
break;
}
}
/* Verify write - check memory is correct */
for (size_t i = 0; i < sizeof(raw); i++) {
TEST_EQUAL(x[i], (uint8_t) i);
}
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_is_big_endian()
{
uint16_t check = 0x1234;
uint8_t *p = (uint8_t *) ✓
if (MBEDTLS_IS_BIG_ENDIAN) {
/* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */
TEST_EQUAL(p[0], 0x12);
TEST_EQUAL(p[1], 0x34);
} else {
/* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */
TEST_EQUAL(p[0], 0x34);
TEST_EQUAL(p[1], 0x12);
}
}
/* END_CASE */
|