1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/* BEGIN_HEADER */
/* Dedicated test suite for mbedtls_mpi_core_random() and the upper-layer
* functions. Due to the complexity of how these functions are tested,
* we test all the layers in a single test suite, unlike the way other
* functions are tested with each layer in its own test suite.
*
* Test strategy
* =============
*
* There are three main goals for testing random() functions:
* - Parameter validation.
* - Correctness of outputs (well-formed, in range).
* - Distribution of outputs.
*
* We test parameter validation in a standard way, with unit tests with
* positive and negative cases:
* - mbedtls_mpi_core_random(): negative cases for mpi_core_random_basic.
* - mbedtls_mpi_mod_raw_random(), mbedtls_mpi_mod_random(): negative
* cases for mpi_mod_random_validation.
* - mbedtls_mpi_random(): mpi_random_fail.
*
* We test the correctness of outputs in positive tests:
* - mbedtls_mpi_core_random(): positive cases for mpi_core_random_basic,
* and mpi_random_many.
* - mbedtls_mpi_mod_raw_random(), mbedtls_mpi_mod_random(): tested indirectly
* via mpi_mod_random_values.
* - mbedtls_mpi_random(): mpi_random_sizes, plus indirectly via
* mpi_random_values.
*
* We test the distribution of outputs only for mbedtls_mpi_core_random(),
* in mpi_random_many, which runs the function multiple times. This also
* helps in validating the output range, through test cases with a small
* range where any output out of range would be very likely to lead to a
* test failure. For the other functions, we validate the distribution
* indirectly by testing that these functions consume the random generator
* in the same way as mbedtls_mpi_core_random(). This is done in
* mpi_mod_random_values and mpi_legacy_random_values.
*/
#include "mbedtls/bignum.h"
#include "mbedtls/entropy.h"
#include "bignum_core.h"
#include "bignum_mod_raw.h"
#include "constant_time_internal.h"
/* This test suite only manipulates non-negative bignums. */
static int sign_is_valid(const mbedtls_mpi *X)
{
return X->s == 1;
}
/* A common initializer for test functions that should generate the same
* sequences for reproducibility and good coverage. */
const mbedtls_test_rnd_pseudo_info rnd_pseudo_seed = {
/* 16-word key */
{ 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
'a', ' ', 's', 'e', 'e', 'd', '!', 0 },
/* 2-word initial state, should be zero */
0, 0
};
/* Test whether bytes represents (in big-endian base 256) a number b that
* is significantly above a power of 2. That is, b must not have a long run
* of unset bits after the most significant bit.
*
* Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}.
* This function returns 1 if, when drawing a number between 0 and b,
* the probability that this number is at least 2^n is not negligible.
* This probability is (b - 2^n) / b and this function checks that this
* number is above some threshold A. The threshold value is heuristic and
* based on the needs of mpi_random_many().
*/
static int is_significantly_above_a_power_of_2(data_t *bytes)
{
const uint8_t *p = bytes->x;
size_t len = bytes->len;
unsigned x;
/* Skip leading null bytes */
while (len > 0 && p[0] == 0) {
++p;
--len;
}
/* 0 is not significantly above a power of 2 */
if (len == 0) {
return 0;
}
/* Extract the (up to) 2 most significant bytes */
if (len == 1) {
x = p[0];
} else {
x = (p[0] << 8) | p[1];
}
/* Shift the most significant bit of x to position 8 and mask it out */
while ((x & 0xfe00) != 0) {
x >>= 1;
}
x &= 0x00ff;
/* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above
* a power of 2 iff x is significantly above 0 compared to 2^8.
* Testing x >= 2^4 amounts to picking A = 1/16 in the function
* description above. */
return x >= 0x10;
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_BIGNUM_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void mpi_core_random_basic(int min, char *bound_bytes, int expected_ret)
{
/* Same RNG as in mpi_random_values */
mbedtls_test_rnd_pseudo_info rnd = rnd_pseudo_seed;
size_t limbs;
mbedtls_mpi_uint *lower_bound = NULL;
mbedtls_mpi_uint *upper_bound = NULL;
mbedtls_mpi_uint *result = NULL;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&upper_bound, &limbs,
bound_bytes));
TEST_CALLOC(lower_bound, limbs);
lower_bound[0] = min;
TEST_CALLOC(result, limbs);
TEST_EQUAL(expected_ret,
mbedtls_mpi_core_random(result, min, upper_bound, limbs,
mbedtls_test_rnd_pseudo_rand, &rnd));
if (expected_ret == 0) {
TEST_EQUAL(0, mbedtls_mpi_core_lt_ct(result, lower_bound, limbs));
TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result, upper_bound, limbs));
}
exit:
mbedtls_free(lower_bound);
mbedtls_free(upper_bound);
mbedtls_free(result);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_legacy_random_values(int min, char *max_hex)
{
/* Same RNG as in mpi_core_random_basic */
mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed;
mbedtls_test_rnd_pseudo_info rnd_legacy;
memcpy(&rnd_legacy, &rnd_core, sizeof(rnd_core));
mbedtls_mpi max_legacy;
mbedtls_mpi_init(&max_legacy);
mbedtls_mpi_uint *R_core = NULL;
mbedtls_mpi R_legacy;
mbedtls_mpi_init(&R_legacy);
TEST_EQUAL(0, mbedtls_test_read_mpi(&max_legacy, max_hex));
size_t limbs = max_legacy.n;
TEST_CALLOC(R_core, limbs);
/* Call the legacy function and the core function with the same random
* stream. */
int core_ret = mbedtls_mpi_core_random(R_core, min, max_legacy.p, limbs,
mbedtls_test_rnd_pseudo_rand,
&rnd_core);
int legacy_ret = mbedtls_mpi_random(&R_legacy, min, &max_legacy,
mbedtls_test_rnd_pseudo_rand,
&rnd_legacy);
/* They must return the same status, and, on success, output the
* same number, with the same limb count. */
TEST_EQUAL(core_ret, legacy_ret);
if (core_ret == 0) {
TEST_MEMORY_COMPARE(R_core, limbs * ciL,
R_legacy.p, R_legacy.n * ciL);
}
/* Also check that they have consumed the RNG in the same way. */
/* This may theoretically fail on rare platforms with padding in
* the structure! If this is a problem in practice, change to a
* field-by-field comparison. */
TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core),
&rnd_legacy, sizeof(rnd_legacy));
exit:
mbedtls_mpi_free(&max_legacy);
mbedtls_free(R_core);
mbedtls_mpi_free(&R_legacy);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_WITH_MPI_UINT */
void mpi_mod_random_values(int min, char *max_hex, int rep)
{
/* Same RNG as in mpi_core_random_basic */
mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed;
mbedtls_test_rnd_pseudo_info rnd_mod_raw;
memcpy(&rnd_mod_raw, &rnd_core, sizeof(rnd_core));
mbedtls_test_rnd_pseudo_info rnd_mod;
memcpy(&rnd_mod, &rnd_core, sizeof(rnd_core));
mbedtls_mpi_uint *R_core = NULL;
mbedtls_mpi_uint *R_mod_raw = NULL;
mbedtls_mpi_uint *R_mod_digits = NULL;
mbedtls_mpi_mod_residue R_mod;
mbedtls_mpi_mod_modulus N;
mbedtls_mpi_mod_modulus_init(&N);
TEST_EQUAL(mbedtls_test_read_mpi_modulus(&N, max_hex, rep), 0);
TEST_CALLOC(R_core, N.limbs);
TEST_CALLOC(R_mod_raw, N.limbs);
TEST_CALLOC(R_mod_digits, N.limbs);
TEST_EQUAL(mbedtls_mpi_mod_residue_setup(&R_mod, &N,
R_mod_digits, N.limbs),
0);
/* Call the core and mod random() functions with the same random stream. */
int core_ret = mbedtls_mpi_core_random(R_core,
min, N.p, N.limbs,
mbedtls_test_rnd_pseudo_rand,
&rnd_core);
int mod_raw_ret = mbedtls_mpi_mod_raw_random(R_mod_raw,
min, &N,
mbedtls_test_rnd_pseudo_rand,
&rnd_mod_raw);
int mod_ret = mbedtls_mpi_mod_random(&R_mod,
min, &N,
mbedtls_test_rnd_pseudo_rand,
&rnd_mod);
/* They must return the same status, and, on success, output the
* same number, with the same limb count. */
TEST_EQUAL(core_ret, mod_raw_ret);
TEST_EQUAL(core_ret, mod_ret);
if (core_ret == 0) {
TEST_EQUAL(mbedtls_mpi_mod_raw_modulus_to_canonical_rep(R_mod_raw, &N),
0);
TEST_MEMORY_COMPARE(R_core, N.limbs * ciL,
R_mod_raw, N.limbs * ciL);
TEST_EQUAL(mbedtls_mpi_mod_raw_modulus_to_canonical_rep(R_mod_digits, &N),
0);
TEST_MEMORY_COMPARE(R_core, N.limbs * ciL,
R_mod_digits, N.limbs * ciL);
}
/* Also check that they have consumed the RNG in the same way. */
/* This may theoretically fail on rare platforms with padding in
* the structure! If this is a problem in practice, change to a
* field-by-field comparison. */
TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core),
&rnd_mod_raw, sizeof(rnd_mod_raw));
TEST_MEMORY_COMPARE(&rnd_core, sizeof(rnd_core),
&rnd_mod, sizeof(rnd_mod));
exit:
mbedtls_test_mpi_mod_modulus_free_with_limbs(&N);
mbedtls_free(R_core);
mbedtls_free(R_mod_raw);
mbedtls_free(R_mod_digits);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_many(int min, char *bound_hex, int iterations)
{
/* Generate numbers in the range 1..bound-1. Do it iterations times.
* This function assumes that the value of bound is at least 2 and
* that iterations is large enough that a one-in-2^iterations chance
* effectively never occurs.
*/
data_t bound_bytes = { NULL, 0 };
mbedtls_mpi_uint *upper_bound = NULL;
size_t limbs;
size_t n_bits;
mbedtls_mpi_uint *result = NULL;
size_t b;
/* If upper_bound is small, stats[b] is the number of times the value b
* has been generated. Otherwise stats[b] is the number of times a
* value with bit b set has been generated. */
size_t *stats = NULL;
size_t stats_len;
int full_stats;
size_t i;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&upper_bound, &limbs,
bound_hex));
TEST_CALLOC(result, limbs);
n_bits = mbedtls_mpi_core_bitlen(upper_bound, limbs);
/* Consider a bound "small" if it's less than 2^5. This value is chosen
* to be small enough that the probability of missing one value is
* negligible given the number of iterations. It must be less than
* 256 because some of the code below assumes that "small" values
* fit in a byte. */
if (n_bits <= 5) {
full_stats = 1;
stats_len = (uint8_t) upper_bound[0];
} else {
full_stats = 0;
stats_len = n_bits;
}
TEST_CALLOC(stats, stats_len);
for (i = 0; i < (size_t) iterations; i++) {
mbedtls_test_set_step(i);
TEST_EQUAL(0, mbedtls_mpi_core_random(result,
min, upper_bound, limbs,
mbedtls_test_rnd_std_rand, NULL));
/* Temporarily use a legacy MPI for analysis, because the
* necessary auxiliary functions don't exist yet in core. */
mbedtls_mpi B = { .s = 1, .n = limbs, .p = upper_bound };
mbedtls_mpi R = { .s = 1, .n = limbs, .p = result };
TEST_ASSERT(mbedtls_mpi_cmp_mpi(&R, &B) < 0);
TEST_ASSERT(mbedtls_mpi_cmp_int(&R, min) >= 0);
if (full_stats) {
uint8_t value;
TEST_EQUAL(0, mbedtls_mpi_write_binary(&R, &value, 1));
TEST_ASSERT(value < stats_len);
++stats[value];
} else {
for (b = 0; b < n_bits; b++) {
stats[b] += mbedtls_mpi_get_bit(&R, b);
}
}
}
if (full_stats) {
for (b = min; b < stats_len; b++) {
mbedtls_test_set_step(1000000 + b);
/* Assert that each value has been reached at least once.
* This is almost guaranteed if the iteration count is large
* enough. This is a very crude way of checking the distribution.
*/
TEST_ASSERT(stats[b] > 0);
}
} else {
bound_bytes.len = limbs * sizeof(mbedtls_mpi_uint);
TEST_CALLOC(bound_bytes.x, bound_bytes.len);
mbedtls_mpi_core_write_be(upper_bound, limbs,
bound_bytes.x, bound_bytes.len);
int statistically_safe_all_the_way =
is_significantly_above_a_power_of_2(&bound_bytes);
for (b = 0; b < n_bits; b++) {
mbedtls_test_set_step(1000000 + b);
/* Assert that each bit has been set in at least one result and
* clear in at least one result. Provided that iterations is not
* too small, it would be extremely unlikely for this not to be
* the case if the results are uniformly distributed.
*
* As an exception, the top bit may legitimately never be set
* if bound is a power of 2 or only slightly above.
*/
if (statistically_safe_all_the_way || b != n_bits - 1) {
TEST_ASSERT(stats[b] > 0);
}
TEST_ASSERT(stats[b] < (size_t) iterations);
}
}
exit:
mbedtls_free(bound_bytes.x);
mbedtls_free(upper_bound);
mbedtls_free(result);
mbedtls_free(stats);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_sizes(int min, data_t *bound_bytes, int nlimbs, int before)
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
mbedtls_mpi_init(&upper_bound);
mbedtls_mpi_init(&result);
if (before != 0) {
/* Set result to sign(before) * 2^(|before|-1) */
TEST_ASSERT(mbedtls_mpi_lset(&result, before > 0 ? 1 : -1) == 0);
if (before < 0) {
before = -before;
}
TEST_ASSERT(mbedtls_mpi_shift_l(&result, before - 1) == 0);
}
TEST_EQUAL(0, mbedtls_mpi_grow(&result, nlimbs));
TEST_EQUAL(0, mbedtls_mpi_read_binary(&upper_bound,
bound_bytes->x, bound_bytes->len));
TEST_EQUAL(0, mbedtls_mpi_random(&result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL));
TEST_ASSERT(sign_is_valid(&result));
TEST_ASSERT(mbedtls_mpi_cmp_mpi(&result, &upper_bound) < 0);
TEST_ASSERT(mbedtls_mpi_cmp_int(&result, min) >= 0);
exit:
mbedtls_mpi_free(&upper_bound);
mbedtls_mpi_free(&result);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_WITH_MPI_UINT */
void mpi_mod_random_validation(int min, char *bound_hex,
int result_limbs_delta,
int expected_ret)
{
mbedtls_mpi_uint *result_digits = NULL;
mbedtls_mpi_mod_modulus N;
mbedtls_mpi_mod_modulus_init(&N);
TEST_EQUAL(mbedtls_test_read_mpi_modulus(&N, bound_hex,
MBEDTLS_MPI_MOD_REP_OPT_RED),
0);
size_t result_limbs = N.limbs + result_limbs_delta;
TEST_CALLOC(result_digits, result_limbs);
/* Build a reside that might not match the modulus, to test that
* the library function rejects that as expected. */
mbedtls_mpi_mod_residue result = { result_digits, result_limbs };
TEST_EQUAL(mbedtls_mpi_mod_random(&result, min, &N,
mbedtls_test_rnd_std_rand, NULL),
expected_ret);
if (expected_ret == 0) {
/* Success should only be expected when the result has the same
* size as the modulus, otherwise it's a mistake in the test data. */
TEST_EQUAL(result_limbs, N.limbs);
/* Sanity check: check that the result is in range */
TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result_digits, N.p, N.limbs));
/* Check result >= min (changes result) */
TEST_EQUAL(mbedtls_mpi_core_sub_int(result_digits, result_digits, min,
result_limbs),
0);
}
/* When the result has the right number of limbs, also test mod_raw
* (for which this is an unchecked precondition). */
if (result_limbs_delta == 0) {
TEST_EQUAL(mbedtls_mpi_mod_raw_random(result_digits, min, &N,
mbedtls_test_rnd_std_rand, NULL),
expected_ret);
if (expected_ret == 0) {
TEST_ASSERT(0 != mbedtls_mpi_core_lt_ct(result_digits, N.p, N.limbs));
TEST_EQUAL(mbedtls_mpi_core_sub_int(result_digits, result.p, min,
result_limbs),
0);
}
}
exit:
mbedtls_test_mpi_mod_modulus_free_with_limbs(&N);
mbedtls_free(result_digits);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_fail(int min, data_t *bound_bytes, int expected_ret)
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
int actual_ret;
mbedtls_mpi_init(&upper_bound);
mbedtls_mpi_init(&result);
TEST_EQUAL(0, mbedtls_mpi_read_binary(&upper_bound,
bound_bytes->x, bound_bytes->len));
actual_ret = mbedtls_mpi_random(&result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL);
TEST_EQUAL(expected_ret, actual_ret);
exit:
mbedtls_mpi_free(&upper_bound);
mbedtls_mpi_free(&result);
}
/* END_CASE */
|