File: Brilliance_monitor.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (240 lines) | stat: -rw-r--r-- 7,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2011, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* %I
* Written by: Peter Willendrup, derived from TOF_lambda_monitor.comp
* Date: May 23, 2012
* Version: $Revision: 4587 $
* Origin: DTU Physics
* Release: McStas 1.12c
*
* Special "Brilliance" monitor of FIXED size 1x1cm. 
*
* %D
* If used in the right setting, will output "instantaneous" and "mean" brilliances in units of Neutrons/cm^2/ster/AA/s. Conditions for proper units:
* <ul>
* <li>Use a with a source of area 1x1cm
* <li>The source must illuminate/focus to an area of 1x1cm a 1m distance
* <li>Parametrise the Brilliance_monitor with the frequency of the source
* <li>To not change the source TOF distribution, place the Brilliance monitor close to the source!
* </ul>
* 
* with a source of area 1x1cm illuminating/focusing to an area of 1x1cm a 1m distance, this monitor will output "instantaneous" and "mean" brilliances in units of Neutrons/cm^2/ster/AA/s
* 
* Here is an example of the use of the component. Note how the mentioned Unit conditions are implemented in instrument code.
*
*COMPONENT Source = ESS_moderator_long(
*    l_low = lambdamin, l_high = lambdamax, dist = 1, xw = 0.01, yh = 0.01,
*    freq = 14, T=50, tau=287e-6, tau1=0, tau2=20e-6,
*    n=20, n2=5, d=0.00286, chi2=0.9, I0=6.9e11, I2=27.6e10,
*    branch1=0, branch2=0.5, twopulses=0, size=0.01)
*  AT (0, 0, 0) RELATIVE Origin
*
*COMPONENT BRIL = Brilliance_monitor(nlam=196,nt=401,filename="bril.sim",
*	t_0=0,t_1=4000,lambda_0=lambdamin,
*	lambda_1=lambdamax, Freq=14)
*AT (0,0,0.000001) RELATIVE Source
*
* %P
* INPUT PARAMETERS:
*
* nlam:      Number of bins in wavelength (1)
* nt:        Number of bins in TOF (1)
* t_0:       Minimum time (us)
* t_1:       Maximum time (us)
* lambda_0:  Minimum wavelength detected (AA)
* lambda_1:  Maximum wavelength detected (AA)
* filename:  Defines filenames for the detector images. Stored as:<br>Peak_&lt;filename&gt; and Mean_&lt;filename&gt; (string)
* restore_neutron: If set, the monitor does not influence the neutron state (1)
* Freq:      Source frequency. Use freq=1 for reactor source (Hz)
* srcarea:   Source area (cm^2)
* tofcuts:   Flag to generate TOF-distributions as function of wavelength (1)
* toflambda: Flag to generate TOF-lambda distribution output ยด (1)
* 
* CALCULATED PARAMETERS:
*
* Div_N:    Array of neutron counts
* Div_p:    Array of neutron weight counts
* Div_p2:   Array of second moments
*
* %E
*******************************************************************************/
DEFINE COMPONENT Brilliance_monitor
DEFINITION PARAMETERS (nlam=101, nt=1001, string filename, t_0=0, t_1=20000, srcarea=1)
  SETTING PARAMETERS (lambda_0=0, lambda_1=20, restore_neutron=0, Freq, int tofcuts=0, int toflambda=0)
  OUTPUT PARAMETERS (tt_0, tt_1, BRIL_N, BRIL_p, BRIL_p2, BRIL_mean, BRIL_peak, BRIL_meanN, BRIL_peakN, BRIL_meanE, BRIL_peakE)
// STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)
// POLARISATION PARAMETERS (sx,sy,sz)
DECLARE
  %{
    double BRIL_N[nt][nlam];
    double BRIL_p[nt][nlam];
    double BRIL_p2[nt][nlam];
    double BRIL_mean[nlam];
    double BRIL_meanN[nlam];
    double BRIL_meanE[nlam];
    double BRIL_peak[nlam];
    double BRIL_peakN[nlam];
    double BRIL_peakE[nlam];

    double BRIL_shape[nt];
    double BRIL_shapeN[nt];
    double BRIL_shapeE[nt];

    double tt_0, tt_1;
    double xmin=-0.005, xmax=0.005, ymin=-0.005, ymax=0.005;
    double ster=1e-4;
    double prsec=1e-6;
    double dlam;
    double dt;
  %}
INITIALIZE
  %{
    int i,j;

    tt_0 = t_0*prsec;
    tt_1 = t_1*prsec;
    dt=(t_1-t_0)*prsec/nt;
    dlam=(lambda_1-lambda_0)/(nlam-1);
    for (i=0; i<nlam; i++)
      {
	BRIL_mean[i] = 0;
	BRIL_peak[i] = 0;
	BRIL_meanN[i] = 0;
	BRIL_peakN[i] = 0;
	BRIL_meanE[i] = 0;
	BRIL_peakE[i] = 0;
	for (j=0; j<nt; j++)
	  {
	    BRIL_N[j][i] = 0;
	    BRIL_p[j][i] = 0;
	    BRIL_p2[j][i] = 0;
	    if (i==0) {
	      BRIL_shape[j] = 0;
	      BRIL_shapeN[j] = 0;
	      BRIL_shapeE[j] = 0;
	    }
	  }
      }
  %}
TRACE
  %{
    int i,j;
    double div;
    double lambda;
    double Pnorm;

    PROP_Z0;
    lambda = (2*PI/V2K)/sqrt(vx*vx + vy*vy + vz*vz);
    if (x>xmin && x<xmax && y>ymin && y<ymax &&
        lambda > lambda_0 && lambda < lambda_1)
    {
      if (t < tt_1 && t > tt_0)
      {
        i = floor((lambda - lambda_0)*nlam/(lambda_1 - lambda_0));
        j = floor((t-tt_0)*nt/(tt_1-tt_0));
	Pnorm=p/dlam/ster/srcarea;
	BRIL_meanN[i]++;
	BRIL_mean[i] += Pnorm;
	BRIL_meanE[i] += Pnorm*Pnorm;
	Pnorm=Pnorm/Freq/dt;
	BRIL_N[j][i]++;
        BRIL_p[j][i] += Pnorm;
        BRIL_p2[j][i] += Pnorm*Pnorm;
	
      }
    } 
    if (restore_neutron) {
      RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
    }  
  %}
SAVE
  %{
  /* First, dump the 2D monitor */
  
  /* For each Wavelength channel, find peak brilliance */
  int i,j,jmax;
  double Pnorm;
  char ff[256];
  char tt[256];
  
  for (i=0; i<nlam; i++)
    {
      Pnorm = -1;
      jmax = -1;
      for (j=0; j<nt; j++)
	{
	  if (BRIL_p[j][i]>=Pnorm)
	    {
	      Pnorm = BRIL_p[j][i];
	      jmax=j;
	    }
	  BRIL_shape[j] = BRIL_p[j][i];
	  BRIL_shapeN[j] = BRIL_N[j][i];
	  BRIL_shapeE[j] = BRIL_p2[j][i];
	  
	}
      if (tofcuts == 1) {
	sprintf(ff, "Shape_%s_%g",filename,lambda_0+i*dlam);
	sprintf(tt, "Peak shape at %g AA",lambda_0+i*dlam);
	DETECTOR_OUT_1D(
			tt,
			"TOF [us]",
			"Peak Brilliance",
			"Shape", t_0, t_1, nt,
			&BRIL_shapeN[0],&BRIL_shape[0],&BRIL_shapeE[0],
			ff);
      }
      BRIL_peakN[i] = BRIL_N[jmax][i];
      BRIL_peak[i] = BRIL_p[jmax][i];
      BRIL_peakE[i] = BRIL_p2[jmax][i];
    }
  sprintf(ff, "Mean_%s",filename);
  DETECTOR_OUT_1D(
	"Mean brilliance",
        "Wavelength [AA]",
        "Mean Brilliance",
        "Mean", lambda_0, lambda_1, nlam,
        &BRIL_meanN[0],&BRIL_mean[0],&BRIL_meanE[0],
        ff);
  sprintf(ff, "Peak_%s",filename);
  DETECTOR_OUT_1D(
	"Peak brilliance",
        "Wavelength [AA]",
        "Peak Brilliance",
        "Peak", lambda_0, lambda_1, nlam,
        &BRIL_peakN[0],&BRIL_peak[0],&BRIL_peakE[0],
        ff);

  /* MPI related NOTE: Order is important here! The 2D-data used to generate wavelength-slices and calculate
     the peak brilliance should be done LAST, otherwise we will get a factor of MPI_node_count too much as 
     scatter/gather has been performed on the arrays... */
  if (toflambda == 1) {
    sprintf(ff, "TOFL_%s",filename);
    DETECTOR_OUT_2D(
		    "TOF-wavelength brilliance",
		    "Time-of-flight [\\gms]", "Wavelength [AA]",
		    t_0, t_1, lambda_0, lambda_1,
		    nt, nlam,
		    &BRIL_N[0][0],&BRIL_p[0][0],&BRIL_p2[0][0],
		    filename);
  }
  %}

MCDISPLAY
  %{
    
    multiline(5, (double)xmin, (double)ymin, 0.0,
                 (double)xmax, (double)ymin, 0.0,
                 (double)xmax, (double)ymax, 0.0,
                 (double)xmin, (double)ymax, 0.0,
                 (double)xmin, (double)ymin, 0.0);
%}

END