File: E_4PI.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (121 lines) | stat: -rw-r--r-- 2,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2006, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: E_4PI
*
* %I
* Written by: Duc Le
* Date: 2000s
* Origin: ISIS
*
* Spherical Energy-sensitive detector  
*
* %D
*
* Example: E_4PI(filename="e4pi.dat",ne=200,Emin=0,Emax=E*2)
*
* %P
* INPUT PARAMETERS:
*
* radius: [m]  Radius of detector (m)
* ne: [1]      Number of energy bins
* Emin: [meV]  Minimum energy measured
* Emax: [meV]  Maximum energy measured
* filename: [string] Name of file in which to store the output data
* restore_neutron: [1] If set, the monitor does not influence the neutron state
*
* CALCULATED PARAMETERS:
*
* PSD_N:    Array of neutron counts
* PSD_p:    Array of neutron weight counts
* PSD_p2:   Array of second moments
*
* %L
* <A HREF="http://neutron.risoe.dk/mcstas/components/tests/powder/">Test
* results</A> (not up-to-date).
*
* %E
*******************************************************************************/


DEFINE COMPONENT E_4PI

SETTING PARAMETERS (int ne=50, Emin=0, Emax=5, string filename=0, radius=1, restore_neutron=0)

DECLARE
%{
  DArray1d PSD_N;
  DArray1d PSD_p;
  DArray1d PSD_p2;
%}
INITIALIZE
%{

  PSD_N = create_darr1d(ne);
  PSD_p = create_darr1d(ne);
  PSD_p2 = create_darr1d(ne);
  
  // Use instance name for monitor output if no input was given
  if (!strcmp(filename,"\0")) sprintf(filename,"%s",NAME_CURRENT_COMP);
%}
TRACE
%{
  double t0, t1, phi, theta, E;
  int i,j,k;

  if(sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, radius) && t1 > 0)
  {
    if(t0 < 0)
      t0 = t1;
    /* t0 is now time of intersection with the sphere. */
    PROP_DT(t0);

    E=VS2E*(vx*vx+vy*vy+vz*vz);
    if(E<=Emax && E>=Emin) {
      k = floor((E - Emin)*ne/(Emax - Emin));
      double p2 = p*p;
      #pragma acc atomic
      PSD_N[k] = PSD_N[k] + 1;
      #pragma acc atomic
      PSD_p[k] = PSD_p[k] + p;
      #pragma acc atomic
      PSD_p2[k] = PSD_p2[k] + p2;
    }
    SCATTER;
  }
  if (restore_neutron) {
    RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p);
  }
%}

SAVE
%{
  DETECTOR_OUT_1D(
    "4Pi Energy monitor",
    "E_F [meV]","Intensity","E",
    Emin, Emax,
    ne,
    &PSD_N[0],&PSD_p[0],&PSD_p2[0],
    filename);
%}

FINALLY %{
  destroy_darr1d(PSD_N);
  destroy_darr1d(PSD_p);
  destroy_darr1d(PSD_p2);
%}

MCDISPLAY
%{
  magnify("");
  circle("xy",0,0,0,radius);
  circle("xz",0,0,0,radius);
  circle("yz",0,0,0,radius);
%}

END