File: Exact_radial_coll.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (285 lines) | stat: -rw-r--r-- 9,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*******************************************************************************
*
* McStas, neutron ray-tracing package
*         Copyright (C) 1997-2006, All rights reserved
*         Risoe National Laboratory, Roskilde, Denmark
*         Institut Laue Langevin, Grenoble, France
*
* Component: Exact_radial_coll
*
* %I
* Written by: Roland Schedler <roland.schedler at hmi.de>
* Modified by: using Collimator_radial Component
* Date: October 2006
* Origin: HMI
* Modified by: E. Farhi, uniformize parameter names (Jul 2008)
*
* An exact radial Soller collimator.
*
* %D
* Radial Soller collimator with rectangular opening, specified length and
* specified foil thickness.
* The collimator is made of many trapezium shaped nslit stacked radially.
* The nslit are separated by absorbing foils, the whole stuff is inside
* an absorbing housing.
* The component should be positioned at the radius center. The model is exact.
* The neutron beam outside the collimator area is transmitted unaffected.
*
* Example: Exact_radial_coll(theta_min=-5, theta_max=5, nslit=100,
*          radius=1.0, length=.3, h_in=.2, h_out=.3, d=0.0001)
*
*
* %P
* INPUT PARAMETERS:
*
* theta_min: [deg]  Minimum Theta angle for the radial setting
* theta_max: [deg]  Maximum Theta angle for the radial setting
* nslit: [1]        Number of channels in the theta range
* radius: [m]       Inner radius (focus point to foil start point).
* length: [m]       Length of the foils / collimator
* h_in: [m]         Input  window height
* h_out: [m]        Output window height
* d: [m]            Thickness of the absorbing foils
* verbose: [0/1]    Gives additional information
*
* %E
*******************************************************************************/


DEFINE COMPONENT Exact_radial_coll

SETTING PARAMETERS (theta_min=-5, theta_max=5, nslit=100,
radius=1.0, length=.5, h_in=.3, h_out=.4,
d=0.0001, verbose=0)

/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */
DECLARE
%{
double alpha_in;
double alpha_out;
double beta_in; 
double beta_out; 
double theta;
 double out_radius;
double iw;
double ow;
double divergence;
%}
INITIALIZE
%{
/* check for input parameters */
if (radius <= 0) exit(printf("Exact_radial_coll: %s: radius must be positive\n", NAME_CURRENT_COMP));
  if (h_in <= 0) exit(printf("Exact_radial_coll: %s: h_in must be positive\n", NAME_CURRENT_COMP));
  if (h_out <= 0) exit(printf("Exact_radial_coll: %s: h_out must be positive\n", NAME_CURRENT_COMP));
  if (d <= 0) exit(printf("Exact_radial_coll: %s: d must be positive\n", NAME_CURRENT_COMP));
  if (nslit <= 0)  exit(printf("Exact_radial_coll: %s: number of channels must be positive\n", NAME_CURRENT_COMP));
  if ((nslit - floor (nslit)) > 0) exit(printf("Exact_radial_coll: %s: number of channels must be an integer\n", NAME_CURRENT_COMP));
  if (length <= 0)    exit(printf("Exact_radial_coll: %s: collimator length must be positive\n", NAME_CURRENT_COMP));
  if (theta_max <= theta_min) exit(printf("Exact_radial_coll: %s: theta_max must be greater than theta_min\n", NAME_CURRENT_COMP));

  theta_max *= DEG2RAD;
  theta_min *= DEG2RAD;
  theta = theta_max - theta_min;
  out_radius = radius + length;
  beta_in =  2*asin(d / (2 * radius));
  beta_out=  2*asin(d / (2 * out_radius));
  if (theta < nslit*beta_in) exit(printf("Exact_radial_coll: %s: the %6.0f foils of %g [meter]\n"
                                             "do not fit within the angular range theta = %4.2f [deg]\n",
                                             NAME_CURRENT_COMP, nslit, d, theta*RAD2DEG));
  alpha_in = (theta - nslit*beta_in)/nslit;
  alpha_out = (theta - nslit*beta_out)/nslit;
  iw = 2*radius*sin((alpha_in/2));
  ow = 2*out_radius*sin((alpha_out/2));
  divergence=(iw+ow)/(sqrt(4*length*length-(ow-iw)*(ow-iw)));

  if (verbose) {
    printf("Exact_radial_coll: %s: foil thickness is %.2g [millimeter]\n", NAME_CURRENT_COMP, d*1000);
    printf("                  opening each  input slit [%.3g:%.0f] [millimeter]\n", iw*1000, h_in*1000);
    printf("                  opening each output slit [%.3g:%.0f] [millimeter]\n", ow*1000, h_out*1000);
    printf("                  divergence per channel is %g [min] \n", divergence*RAD2MIN);
  }
%}

TRACE
%{
  double phi, t0, t1, t2, t3;
  int    intersect;
  long   input_chan,  output_chan;
  double input_theta, output_theta;
  double input_center,output_center;
  double window_theta;
  char   ok=0;

  /* first compute intersection time with input cylinder */
  intersect=cylinder_intersect(&t0,&t3,x,y,z,vx,vy,vz,radius,h_in);
  if (!intersect) ABSORB;
  else if (t3 > t0) t0 = t3;

  intersect=cylinder_intersect(&t1,&t2,x,y,z,vx,vy,vz,out_radius,h_out);
  if (!intersect) ABSORB;
  else if (t2 > t1) t1 = t2;

  /* get index of input slit */
  if (t0 > 0 && t1 > t0) {
      PROP_DT(t0);
      input_theta = atan2(x, z);
     /* channel number (start at 0) */
      window_theta = (theta_max - theta_min)/nslit;
      input_chan  = floor((input_theta - theta_min)/window_theta);
      if (input_chan >= 0 && input_chan < nslit && fabs(y) < h_in/2) ok=1;
    if (ok) {
        input_center= theta_min + input_chan*window_theta + (window_theta)/2;
        /* are we outside the soller or in the foil? */
        phi = input_theta - input_center;
        if (fabs(phi) > alpha_in/2) ABSORB; /* inside the foil*/
        SCATTER;

      /* propagate to output radius */
      PROP_DT(t1-t0);
      SCATTER;
        output_theta = atan2(x, z);
        /* channel number (start at 0) */
        output_chan  = floor((output_theta - theta_min)/window_theta);
        /* did we change channel ? */
        if (output_chan != input_chan) ABSORB; /* changed slit */
        output_center= theta_min + output_chan*window_theta
                    + (window_theta)/2;
        /* are we outside the soller */
        phi = output_theta -output_center;
        if (fabs(phi) > alpha_out/2 || fabs(y) > h_out/2) ABSORB; /* outside output slit */

    } /* else we pass aside the entrance window of radial collimator */
    else {
      /* propagate to output radius */
      PROP_DT(t1-t0);
      SCATTER;
        output_theta = atan2(x, z);
        /* channel number (start at 0) */
        output_chan  = floor((output_theta - theta_min)/window_theta);
       /* are we come from outside into the soller or in the foil?*/
        if (output_chan >= 0 || output_chan < nslit) ABSORB;
    } /* else we pass aside the exit window of radial collimator */
  }   /* else did not encounter collimator */

%}

MCDISPLAY
%{
  int i;
  double theta1, theta2, theta3, theta4;
  double x_in_l,  z_in_l,  x_in_r,  z_in_r;
  double x_out_l, z_out_l, x_out_r, z_out_r;
  double window_theta, y1, y2;

  
  window_theta = alpha_in + beta_in;
  y1 = h_in/2;
  y2 = h_out/2;

  theta1 = theta_min;
  theta3 = theta1+beta_in/2;
  theta4 = theta1+beta_out/2;

  z_in_l = radius*cos(theta1);
  x_in_l = radius*sin(theta1);
  z_in_r = radius*cos(theta3);
  x_in_r = radius*sin(theta3);

  z_out_l = out_radius*cos(theta1);
  x_out_l = out_radius*sin(theta1);
  z_out_r = out_radius*cos(theta4);
  x_out_r = out_radius*sin(theta4);

    multiline(5,
      x_in_l, -y1, z_in_l,
      x_in_l,  y1, z_in_l,
      x_out_l, y2, z_out_l,
      x_out_l,-y2, z_out_l,
      x_in_l, -y1, z_in_l);

   line(x_in_l,   y1, z_in_l,  x_in_r,  y1, z_in_r);
   line(x_in_l,  -y1, z_in_l,  x_in_r, -y1, z_in_r);
   line(x_out_l,  y2, z_out_l, x_out_r, y2, z_out_r);
   line(x_out_l, -y2, z_out_l, x_out_r,-y2, z_out_r);

   multiline(5,
      x_in_r, -y1, z_in_r,
      x_in_r,  y1, z_in_r,
      x_out_r, y2, z_out_r,
      x_out_r,-y2, z_out_r,
      x_in_r, -y1, z_in_r);

  for (i = 1; i < nslit; i++) {
    theta1 = i*window_theta+theta_min-beta_in/2;
    theta2 = i*window_theta+theta_min+beta_in/2;
    theta3 = i*window_theta+theta_min-beta_out/2;
    theta4 = i*window_theta+theta_min+beta_out/2;

    z_in_l = radius*cos(theta1);
    x_in_l = radius*sin(theta1);
    z_in_r = radius*cos(theta2);
    x_in_r = radius*sin(theta2);

    z_out_l = out_radius*cos(theta3);
    x_out_l = out_radius*sin(theta3);
    z_out_r = out_radius*cos(theta4);
    x_out_r = out_radius*sin(theta4);
    /* left side */
    multiline(5,
      x_in_l, -y1, z_in_l,
      x_in_l,  y1, z_in_l,
      x_out_l, y2, z_out_l,
      x_out_l,-y2, z_out_l,
      x_in_l, -y1, z_in_l);
   /* left -> right lines */
   line(x_in_l,   y1, z_in_l,  x_in_r,  y1, z_in_r);
   line(x_in_l,  -y1, z_in_l,  x_in_r, -y1, z_in_r);
   line(x_out_l,  y2, z_out_l, x_out_r, y2, z_out_r);
   line(x_out_l, -y2, z_out_l, x_out_r,-y2, z_out_r);
   /* right side */
   multiline(5,
      x_in_r, -y1, z_in_r,
      x_in_r,  y1, z_in_r,
      x_out_r, y2, z_out_r,
      x_out_r,-y2, z_out_r,
      x_in_r, -y1, z_in_r);
  }

  /* remaining bits */

  theta1 = theta_max;
  theta3 = theta1-beta_in/2;
  theta4 = theta1-beta_out/2;

  z_in_l = radius*cos(theta1);
  x_in_l = radius*sin(theta1);
  z_in_r = radius*cos(theta3);
  x_in_r = radius*sin(theta3);

  z_out_l = out_radius*cos(theta1);
  x_out_l = out_radius*sin(theta1);
  z_out_r = out_radius*cos(theta4);
  x_out_r = out_radius*sin(theta4);

    multiline(5,
      x_in_l, -y1, z_in_l,
      x_in_l,  y1, z_in_l,
      x_out_l, y2, z_out_l,
      x_out_l,-y2, z_out_l,
      x_in_l, -y1, z_in_l);

   line(x_in_l,   y1, z_in_l,  x_in_r,  y1, z_in_r);
   line(x_in_l,  -y1, z_in_l,  x_in_r, -y1, z_in_r);
   line(x_out_l,  y2, z_out_l, x_out_r, y2, z_out_r);
   line(x_out_l, -y2, z_out_l, x_out_r,-y2, z_out_r);

   multiline(5,
      x_in_r, -y1, z_in_r,
      x_in_r,  y1, z_in_r,
      x_out_r, y2, z_out_r,
      x_out_r,-y2, z_out_r,
      x_in_r, -y1, z_in_r);

%}

END