File: Fermi_chop2a.comp

package info (click to toggle)
mccode 3.5.19%2Bds5-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,113,256 kB
  • sloc: ansic: 40,697; python: 25,137; yacc: 8,438; sh: 5,405; javascript: 4,596; lex: 1,632; cpp: 742; perl: 296; lisp: 273; makefile: 226; fortran: 132
file content (267 lines) | stat: -rw-r--r-- 9,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/******************************************************************
*
*  McStas, version 3.1, 
*          
*          
*
* Component: Fermi_chop2a
*
* %Identification
* Written by: Garrett Granroth
* Date: 6 Feb 2005
* Origin: SNS Oak Ridge,TN
* 
* %D
* Models an SNS Fermic Chopper, used in the SNS_ARCS instrument model.
*
* %Parameters
* nput Parameters:
*  
* len: [m]      slit package length
* w: [m]        slit package width
* nu: [Hz]      frequency
* delta: [sec]  time from edge of chopper to center Phase angle
* tc: [sec]     time when desired neutron is at the center of the chopper
* ymin: [m]     Lower y bound
* ymax: [m]     Upper y bound
* nchan: [1]    number of channels in chopper
* bw: [m]       blade width
* blader: [m]   blade radius
*
*
* %End
*******************************************************************/
DEFINE COMPONENT Fermi_chop2a

SETTING PARAMETERS (len, w, nu, delta, tc, ymin, ymax, nchan, bw, blader)

SHARE
%{
#ifndef FERMI_CHOP_DEFS
#define FERMI_CHOP_DEFS   
   /* routine to calculate acos in proper quadrant  range = 0 to 2PI*/
   #pragma acc routine 
   double acos0_2pi(double x,double y)
    {
       if (y>0.0){ 
         return acos(x);
       }
         return 2.0*PI-acos(x);
    }

   /*routine to calculate x and y positions of a neutron in a fermi chopper */
   #pragma acc routine
   void neutxypos(double *x, double *y, double phi, double inrad, double* c)
    {      
        *x=c[0]+inrad*cos(phi);
        *y=c[1]+inrad*sin(phi);
    }

    /* routine to calculate the origin of a circle that describes the neutron path through the chopper */  
    #pragma acc routine
    void calccenter(double* c, double* zr, double* xr){
      double denom, A,B,C,D,a,b;
      denom=2*(-zr[0]*xr[2] +zr[0]*xr[1]+ zr[1]*xr[2]+xr[0]*zr[2]-xr[0]*zr[1] - xr[1]*zr[2]);
       A=xr[1]-xr[2];B=xr[0]-xr[1];C=zr[2]-zr[1];D=zr[1]-zr[0];
       a=zr[0]*zr[0]-zr[1]*zr[1]+xr[0]*xr[0]-xr[1]*xr[1];
       b=zr[2]*zr[2]-zr[1]*zr[1]+xr[2]*xr[2]-xr[1]*xr[1];
       c[0]=1.0/denom*(A*a+B*b);
       c[1]=1.0/denom*(C*a+D*b);  
    }

#endif

/* function that describes the shape of the blades */
    #pragma acc routine
    double blades(double zin,double rin,double off){
        if (rin!=0.0)
     	  return rin*(1-cos(asin(zin/fabs(rin))))+off;
        else
       	  return 0;
    }

/* function to calculate which channel the neturon is in and to check if it is in a blade 
 *  or outside the slit package 
 * return 0 if neutron does not transmit return 1 with channel number if neutron will pass*/
    #pragma acc routine
    int checkabsorb(double phi,int *chan_num, double inrad,double inw, double insw, 
                    double inbw, double blader, double off, double* c){
     double xtmp,neuzr,neuxr;
     neutxypos(&neuzr,&neuxr,phi,inrad,c);
  // printf("xr:%g zr:%g phi: %g r: %g c[0]: %g c[1]: %g\n",neuxr,neuzr,phi,inrad,c[0],c[1]);
     if (fabs(neuxr)>inw/2.0) // check if neutron x position is outside of slit package
         return 0;
     xtmp=neuxr+inw/2.0;  // move origin to side of slit package 
     *chan_num=ceil((xtmp-blades(neuzr,blader,off))/(inbw+insw)); //calculate channel number
      //check if neutron is in blade 
     if (xtmp >*chan_num*(inbw+insw)+blades(neuzr,blader,off))
         return 0;
     return 1;
    }

%}

    DECLARE
%{

    double omega;
    double off;
    double splen; 
    double rad;
    double sw;
    double tw;  
  
%}
INITIALIZE
%{
   splen=len/2.0;
   omega=2.0*PI*nu;
   off=blader*(1-cos(asin(splen/fabs(blader))));// the additional width needed to accomodate the curvature of the blade
   tw=(w+2.0*off);  //the total width needed to contain the slit package
   rad=sqrt(tw*tw/4.0+splen*splen); //radius of cylinder containing slit package.
   sw=(w-bw)/nchan-bw;
   printf("sw: %g rad: %g\n",sw,rad);

%}
TRACE
%{
 
  double t0,t1,dphi,dt2,tneuzr,tneuxr,nrad;
  double phivec[200],tpt[3],xpt[3],ypt[3],zpt[3],zr[3],xr[3],yr[3],theta[3],c[2];
  int chan_num,chan_num0,idx1,idx3;
  if (cylinder_intersect (&t0, &t1, x, y, z, vx, vy, vz, rad, ymax-ymin)){
    if (t0 < 0)			/*Neutron started inside cylinder */
        ABSORB;
    dt2=t1-t0;	
    PROP_DT(t0);                /*propagate neutron to edge of chopper*/
    /*calculate neutron position and velocity in chopper frame 
      calculate 3 points in the instrument frame and put them into the
      chopper frame inorder to determine the radius and center of a circle 
       that describes the path of the neutron in the chopper frame. */
    tpt[1]=t;
    tpt[2]=t+dt2;
    tpt[0]=t+dt2/2.0;
     //set local 0 in time as tc and calculate angle of rotation for each point
    for(idx3=0;idx3<3;idx3++){
      theta[idx3]=(tpt[idx3]-tc)*omega;
    }
    zpt[1]=-sqrt(rad*rad-x*x);  xpt[1]=x; ypt[1]=y;   /* point where neutron intersects chopper */
    zpt[2]=zpt[1]+vz*(dt2); xpt[2]=xpt[1]+vx*(dt2); ypt[2]=ypt[1]+vy*(dt2);  /* point where neutron leaves the chopper */
    xpt[0]=xpt[1]+vx*(dt2/2.0); ypt[0]=ypt[1]+vy*(dt2/2.0); zpt[0]=zpt[1]+vz*(dt2/2.0); /*point half way between in time */
   /* do the rotation */ 
   for(idx3=0;idx3<3;idx3++){
       rotate(xr[idx3],yr[idx3],zr[idx3],xpt[idx3],ypt[idx3],zpt[idx3],theta[idx3],0,1,0);     
    }       
    calccenter(c,zr,xr); /* calculate the center */
    nrad=sqrt((zr[0]-c[0])*(zr[0]-c[0])+(xr[0]-c[1])*(xr[0]-c[1])); /*calculate the radius of curvature for the neutron path */
   /* calculate points along path of neutron through cylinder quit on absorption
    * or transmit neutron if 200 points are calculated 
    * calculate phi for first and last points */
   phivec[0]=acos0_2pi((zr[1]-c[0])/nrad,xr[1]-c[1]);phivec[1]=acos0_2pi((zr[2]-c[0])/nrad,xr[2]-c[1]);
   neutxypos(&tneuzr,&tneuxr,phivec[0],nrad,c);
 /* reset phi[0] and phi[1] to match the length of the slit package rather than cylinder radius*/
   if(tneuzr<-splen){
       phivec[0]=acos0_2pi((-c[0]-splen)/nrad,-c[1]);
    }
   neutxypos(&tneuzr,&tneuxr,phivec[1],nrad,c);
   if(tneuzr>splen){
       phivec[1]=acos0_2pi((-c[0]+splen/2.0)/nrad,-c[1]);
    }
   dphi=phivec[1]-phivec[0];  /* initial dphi */
   idx1=2;
   phivec[idx1]=phivec[0]+dphi/2.0;  /* calculate center point */
   if (!checkabsorb(phivec[idx1],&chan_num,nrad,tw,sw,bw,blader,off,c))
      ABSORB;
   chan_num0=chan_num;
   while (idx1<129){
     dphi=phivec[1]-phivec[idx1];
     idx1++;
     phivec[idx1]=phivec[0]+dphi/2.0;
     if (!checkabsorb(phivec[idx1],&chan_num,nrad,tw,sw,bw,blader,off,c))
      ABSORB;
     if ((chan_num!=chan_num0) || (chan_num>nchan))
       ABSORB;
     /*  If the current dphi is positive calculate points until a point is beyond phivec[1]
                    Check to see if the point is absorbed after each new point is generated stop if more than 129 iterations are performed
            */
     if (dphi>0){
       while ((phivec[idx1]<phivec[1])&&(idx1<129)){
        /* printf("phivec[%i]: %g dphi: %g phivec[1]: %g\n", idx1,phivec[idx1],dphi,phivec[1]);*/
         idx1++;
         phivec[idx1]=phivec[idx1-1]+dphi;
         if (!checkabsorb(phivec[idx1],&chan_num,nrad,tw,sw,bw,blader,off,c))
           ABSORB;
     //   printf("chan_num0: %i chan_num: %i\n",chan_num0,chan_num);
         if ((chan_num!=chan_num0) || (chan_num>nchan))
           ABSORB;
           
       }
       if (phivec[idx1]>=phivec[1]) idx1--; //remove the point that is beyond phivec[1]
     }
     /*  If the current dphi is negative calculate points until a point is beyond phivec[1]
                    Check to see if the point is absorbed after each new point is generated stop if more than 129 iterations are performed
            */
     else if (dphi<0){
       while ((phivec[idx1]>phivec[1])&&(idx1<129)){
        /* printf("phivec[%i]: %g\n", idx1,phivec[idx1]);*/
         idx1++;
         phivec[idx1]=phivec[idx1-1]+dphi;
         if (!checkabsorb(phivec[idx1],&chan_num,nrad,tw,sw,bw,blader,off,c))
           ABSORB;
      //   printf("chan_num0: %i chan_num: %i\n",chan_num0,chan_num);
         if ((chan_num!=chan_num0) || (chan_num>nchan))
           ABSORB;                  
       }
       if (phivec[idx1]<=phivec[1]) idx1--; //remove the point that is beyond phivec[1]
     }
     else
        ABSORB; /* dphi =0? */
   }      
  }
  else				/* The neutron failed to even hit the chopper */
    ABSORB;

%}
MCDISPLAY
%{
double zstep,x1,x2,x3,x4,z1,z2;
int idx, idx2;
line(tw/2.0,ymin,splen,tw/2.0,ymax,splen);
line(tw/2.0,ymin,-splen,tw/2.0,ymax,-splen);
line(-tw/2.0,ymin,splen,-tw/2.0,ymax,splen);
line(-tw/2.0,ymin,-splen,-tw/2.0,ymax,-splen);
line(tw/2.0,ymax,splen,tw/2.0,ymax,-splen);
line(-tw/2.0,ymax,splen,-tw/2.0,ymax,-splen);
line(tw/2.0,ymin,splen,tw/2.0,ymin,-splen);
line(-tw/2.0,ymin,splen,-tw/2.0,ymin,-splen);
circle("zx",0,ymin,0,rad);
circle("zx",0,ymax,0,rad);
zstep=2.0*splen/10.0;
for(idx=0;idx<nchan+1;idx++){
   for(idx2=0;idx2<10;idx2++){
      z1=idx2*zstep-splen;
      z2=(idx2+1)*zstep-splen;
      x1=blades(z1,blader,off)+idx*(sw+bw)-tw/2.0;
      x2=blades(z2,blader,off)+idx*(sw+bw)-tw/2.0;
      x3=x1+bw;
      x4=x2+bw;
      line(x1,ymin,z1,x2,ymin,z2);
      line(x1,ymax,z1,x2,ymax,z2);
      line(x3,ymin,z1,x4,ymin,z2);
      line(x3,ymax,z1,x4,ymax,z2);
      if(idx2==0){
        line(x1,ymin,z1,x1,ymax,z1);
        line(x3,ymin,z1,x3,ymax,z1);
        line(x1,ymin,z1,x3,ymin,z1);
        line(x1,ymax,z1,x3,ymax,z1);
      }
      if(idx2==9){
        line(x2,ymin,z2,x2,ymax,z2);
        line(x4,ymin,z2,x4,ymax,z2);
        line(x2,ymin,z2,x4,ymin,z2);
        line(x2,ymax,z2,x4,ymax,z2);
      }
   }
}
%}
END